首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During copulation, males of some calopterygid damselfly species displace the sperm stored in the spermatheca: the male genital appendages enter into the spermathecal ducts and physically remove sperm. In Calopteryx haemorrhoidalis, the genital appendages are too wide to penetrate the spermathecae, but males use a different mechanism in which the aedeagus stimulates the vaginal sensilla that control spermathecal sperm release. Since these sensilla are used during egg fertilization and oviposition, it was hypothesized that this function evolved before the male stimulatory ability. I investigated this using Hetaerina cruentata, a species whose position in the Calopterygidae phylogeny is more basal than Calopteryx. Given this position and having determined that males of this species are not able to displace sperm of their conspecific females during copulation, it was expected that H. cruentata females would eject sperm when stimulated with the aedeagi of C. haemorrhoidalis but not when stimulated with the aedeagi of their conspecifics. This prediction was confirmed. In order to investigate the widespread nature of this result, some other Calopteryx species-Calopteryx xanthostoma and Calopteryx virgo-were investigated. The results were similar to those of H. cruentata: conspecific males were unable to stimulate their females, but females ejected sperm when stimulated with C. haemorrhoidalis aedeagi. Morphometric analysis suggests that the mechanistic explanation for the stimulatory ability of C. haemorrhoidalis genitalia is that the aedeagal region that makes contact with the vaginal sensilla is wider in C. haemorrhoidalis than in the other species. These results suggest that the sensory "bias" shown and shared by H. cruentata, Calopteryx splendens, C. virgo, and C. haemorrhoidalis females represents an ancestral condition and that the male stimulatory ability is absent in the evolutionary history of the clade. These pieces of evidence as well as another one presented elsewhere, which indicates that C. haemorrhoidalis males vary in their stimulatory ability, constitute the three criteria for a case of sexual selection via exploitation of a female sensory bias. These results also provide support to the sensory trap hypothesis that indicates that the female bias-in this case, egg fertilization and oviposition-evolved in a context different from sexual selection. Considering that the male genital appendages responsible for physically removing spermathecal sperm in other calopterygids are present in C. haemorrhoidalis, I suggest that males were once able to displace spermathecal sperm physically. Such ability may have been later impeded by a reduction in size of the spermathecal ducts. Possibly, one of the latest events in this sequence is the male's stimulatory ability. This hypothetical series of events suggests a coevolutionary scenario in which the central actor is the sperm stored in the spermathecae.  相似文献   

2.
Sexual selection theory predicts a trade‐off between premating (ornaments and armaments) and postmating (testes and ejaculates) sexual traits, assuming that growing and maintaining these traits is costly and that total reproductive investments are limited. The number of males in competition, the reproductive gains from investing in premating sexual traits, and the level of sperm competition are all predicted to influence how males allocate their finite resources to these traits. Yet, empirical examination of these predictions is currently scarce. Here, we studied relative expenditure on pre‐ and postmating sexual traits among frog species varying in their population density, operational sex ratio, and the number of competing males for each clutch of eggs. We found that the intensifying struggle to monopolize fertilizations as more and more males clasp the same female to fertilize her eggs shifts male reproductive investment toward sperm production and away from male weaponry. This shift, which is mediated by population density and the associated level of male–male competition, likely also explains the trade‐off between pre‐ and postmating sexual traits in our much broader sample of anuran species. Our results highlight the power of such a multilevel approach in resolving the evolution of traits and allocation trade‐offs.  相似文献   

3.
Hurt CR  Farzin M  Hedrick PW 《Genetics》2005,171(2):655-662
The timing and pattern of reproductive barrier formation in allopatric populations has received much less attention than the accumulation of reproductive barriers in sympatry. The theory of allopatric speciation suggests that reproductive barriers evolve simply as by-products of overall genetic divergence. However, observations of enhanced premating barriers in allopatric populations suggest that sexual selection driven by intraspecific competition for mates may enhance species-specific signals and accelerate the speciation process. In a previous series of laboratory trials, we examined the strength of premating and postmating barriers in an allopatric species pair of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis. Behavioral observations provided evidence of asymmetrical assortative mating, while reduced brood sizes and male-biased F(1) sex ratios suggest postmating incompatibilities. Here we examine the combined effects of premating and postmating barriers on the genetic makeup of mixed populations, using cytonuclear genotype frequencies of first- and second-generation offspring. Observed genotype frequencies strongly reflect the directional assortative mating observed in behavioral trials, illustrating how isolating barriers that act earlier in the reproductive cycle will have a greater effect on total reproductive isolation and may be more important to speciation than subsequent postmating reproductive barriers.  相似文献   

4.
Sperm and female reproductive tract morphology are among the most rapidly evolving characters known in insects. To investigate whether interspecific variation in these traits results from divergent coevolution we examined testis size, sperm length and female reproductive tract morphology for evidence of correlated evolution using 13 species of diopsid stalk-eyed flies. We found that sperm dimorphism (the simultaneous production of two size classes of sperm by individual males) is ancestral and occurs in four genera while sperm monomorphism evolved once and persists in one genus. The length of ''long-sperm'' types, though unrelated to male body or testis size, exhibits correlated evolution with two regions of the female reproductive tract, the spermathecae and ventral receptacle, where sperm are typically stored and used for fertilization, respectively. Two lines of evidence indicate that ''short sperm'', which are probably incapable of fertilization, coevolve with spermathecae. First, loss of sperm dimorphism coincides phylogenetically with reduction or loss of spermathecae. Second, evolutionary change in short-sperm length correlates with change in spermathecal size but not spermathecal duct length or ventral receptacle length. Morphological coevolution between sperm and female reproductive tracts is consistent with a history of female-mediated selection on sperm length.  相似文献   

5.
Comparing the reproductive output of intra- and inter-population matings is the most common way to assess whether post-mating reproductive isolation is caused by genetic incompatibilities. Such genetic incompatibility can however, only assume that the quantity of the post-mating signals involved does not differ between intra- and inter-population matings. This assumption may not be true because sexual selection predicts reduced mating effort towards low-quality mates and in many circumstances, allopatric partners are low-quality mates. Post-mating efforts may, therefore, be reduced in inter- compared to intra-population matings. Here, I test this crucial assumption by studying variation in one post-mating trait, sperm number, in crosses of two parapatric grasshopper populations. In both populations, males transferred fewer sperm to allopatric than sympatric females. If such plasticity with respect to population is common in other post-mating traits, differences between inter- and intra-population crosses may be more frequently caused by differences in sperm number rather than gamete incompatibility. Additionally, I found that sperm numbers declined less rapidly in the female storage organ of allopatric than sympatric females but its rate differed markedly between populations. This is discussed with respect to female adaptations to male traits.  相似文献   

6.
Sperm competition is a pervasive force. One adaptation is the male ability to displace the rivals' sperm that females have stored from previous copulations. In the damselfly, Calopteryx haemorrhoidalis asturica , males with wider aedeagi displace more spermathecal sperm. The present study documents that the same mechanism operates in another damselfly, Hetaerina americana . However, this genital width in both species decreases along the season, but late-emerging females have more sperm displaced than early-emerging females. Because territorial males mated more and were larger in body and genital size than nonterritorial males, late-season females mated with considerably larger males with respect to female size and this produced higher sperm displacement. Assuming female benefits from storing sperm but that such benefit does not prevail if males displace sperm, it is predicted that, along the season, females will mate less and male harassment (in terms of male mating attempts and oviposition duration) will increase. These predictions were corroborated. In H. americana , it was also tested whether spermathecal sperm became less viable along the season. The results obtained did not corroborate this. This is the first evidence indicating that season affects sperm displacement ability and female mating frequency due to changes in male body and genital size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 815–829.  相似文献   

7.
Differences in secondary sexual characteristics of males often provide the most conspicuous means of distinguishing between closely related species. Does this therefore imply that the absence of differentiation in exaggerated male traits between allopatric populations provides evidence of a single, genetically cohesive species? We addressed this question with a comprehensive investigation of two populations (French Guiana and Panama) of the harlequin beetle-riding pseudoscorpion, Cordylochernes scorpioides. This highly sexually dimorphic pseudoscorpion is currently described as a single species, ranging throughout the Neotropics. Our morphometric analyses detected minimal differentiation between the two populations in all nine external morphological characters measured, including sexually dimorphic traits in males. Only in traits of the spermatophore was there any appreciable level of differentiation. Behavior differentiation and prezygotic reproductive isolation were also limited: 78.3% of males successfully transferred sperm to “foreign” females, and in 63.9% of these cases, females' eggs were successfully fertilized. By contrast, extensive divergence existed in two of nine electrophoretic loci, including an essentially fixed-allele difference at the Ldh locus. Most significantly, postzygotic reproductive isolation was complete, with heteropopulation zygotes invariably aborting early in development. These results strongly suggest that the two populations are, in fact, sibling species, a conclusion supported by our recently published findings on their marked divergence in minisatellite DNA. How can such interpopulation homogeneity in male sexually dimorphic traits exist in the face of strong genetic divergence? We propose that sexual selection, oscillating between favoring small and then large males, maintains such high levels of male variability within each population that it has obscured a speciation event in which genetic divergence and postzygotic incompatibility have clearly outpaced the evolution of prezygotic reproductive isolation.  相似文献   

8.
The role of male body size in postmating sexual selection wasexplored in a semiaquatic insect, the water strider Gerris lateralis.To separate effects of male size per se from those due to numericsperm competition, male recovery period (shown here to be proportionalto ejaculate size) was manipulated independently of body sizein a factorial experiment where virgin females were mated firstwith sterile males and then with focal males. Both relativemale fertilization success and female reproductive rate were measured.The number of sperm transferred increased with male recoveryperiod, an effect that was mediated by longer copulation duration,but there were no effects of body size on ejaculate size. Neithermale size nor recovery period had any significant direct effectson male fertilization success. However, copulation durationinfluenced relative fertilization success, suggesting that malesable to transfer more sperm also achieved higher fertilizationsuccess. Females exercised cryptic female choice by modulatingtheir reproductive rate in a manner favoring large males andmales that were successful in terms of achieving high relativefertilization success. Thus, successful males gained a twofoldadvantage in postmating sexual selection. This study has important implicationsfor previous estimates of sexual selection in this group of insectsbecause pre- and postmating sexual selection will be antagonisticdue to limitations in male sperm production: males mating frequently(high mating success) will on average transfer fewer sperm ineach mating and will hence tend to fertilize fewer eggs permating (low fertilization success).  相似文献   

9.
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology.  相似文献   

10.
Reinforcement occurs when hybridization between closely related lineages produces low‐fitness offspring, prompting selection for elevated reproductive isolation specifically in areas of sympatry. Both premating and postmating prezygotic behaviors have been shown to be the target of reinforcing selection, but it remains unclear whether remating behaviors experience reinforcement, although they can also influence offspring identity and limit formation of hybrids. Here, we evaluated evidence for reinforcing selection on remating behaviors in Drosophila pseudoobscura, by comparing remating traits in females from populations historically allopatric and sympatric with Drosophila persimilis. We found that the propensity to remate was not higher in sympatric females, compared to allopatric females, regardless of whether the first mated male was heterospecific or conspecific. Moreover, remating behavior did not contribute to interspecific reproductive isolation among any population; that is, females showed no higher propensity to remate following a heterospecific first mating than following a conspecific first mating. Instead, we found that females are less likely to remate after initial matings with unfamiliar males, regardless of species identity. This is consistent with one scenario of postmating sexual conflict in which females are poorly defended against postcopulatory manipulation by males with whom they have not coevolved. Our results are generally inconsistent with reinforcement on remating traits and suggest that this behavior might be more strongly shaped by the consequences of local antagonistic male–female interactions than interactions with heterospecifics.  相似文献   

11.
Postcopulatory sexual selection is credited with driving rapid evolutionary diversification of reproductive traits and the formation of reproductive isolating barriers between species. This judgment, however, has largely been inferred rather than demonstrated due to general lack of knowledge about processes and traits underlying variation in competitive fertilization success. Here, we resolved processes determining sperm fate in twice‐mated females, using transgenic Drosophila simulans and Drosophila mauritiana populations with fluorescently labeled sperm heads. Comparisons among these two species and Drosophila melanogaster revealed a shared motif in the mechanisms of sperm precedence, with postcopulatory sexual selection potentially occurring during any of the three discrete stages: (1) insemination; (2) sperm storage; and (3) sperm use for fertilization, and involving four distinct phenomena: (1) sperm transfer; (2) sperm displacement; (3) sperm ejection; and (4) sperm selection for fertilizations. Yet, underlying the qualitative similarities were significant quantitative differences in nearly every relevant character and process. We evaluate these species differences in light of concurrent investigations of within‐population variation in competitive fertilization success and postmating/prezygotic reproductive isolation in hybrid matings between species to forge an understanding of the relationship between microevolutionary processes and macroevolutionary patterns as pertains to postcopulatory sexual selection in this group.  相似文献   

12.
Population divergence in sexual traits is affected by different selection pressures, depending on the mode of reproduction. In allopatric sexual populations, aspects of sexual behavior may diverge due to sexual selection. In parthenogenetic populations, loss‐of‐function mutations in genes involved in sexual functionality may be selectively neutral or favored by selection. We assess to what extent these processes have contributed to divergence in female sexual traits in the parasitoid wasp Leptopilina clavipes in which some populations are infected with parthenogenesis‐inducing Wolbachia bacteria. We find evidence consistent with both hypotheses. Both arrhenotokous males and males derived from thelytokous strains preferred to court females from their own population. This suggests that these populations had already evolved population‐specific mating preferences when the latter became parthenogenetic. Thelytokous females did not store sperm efficiently and fertilized very few of their eggs. The nonfertility of thelytokous females was due to mutations in the wasp genome, which must be an effect of mutation accumulation under thelytoky. Divergence in female sexual traits of these two allopatric populations has thus been molded by different forces: independent male/female coevolution while both populations were still sexual, followed by female‐only evolution after one population switched to parthenogenesis.  相似文献   

13.
14.
Determining whether reproductive isolation evolves through mate choice and/or gametic factors that prevent fertilization or through the post‐zygotic mechanisms of hybrid sterility or inviability is fundamental to understanding speciation. Investigation of the pre‐ and post‐zygotic components of reproductive isolation is facilitated in the pseudoscorpion, Cordylochernes scorpioides, by its indirect method of sperm transfer and viviparous embryonic development. Previous research on this species, in which mate discrimination was assessed in virgin females, suggested that female choice played only a minor role in reproductive isolation between populations from French Guiana and Panamá. Here, in a study of three allopatric populations of C. scorpioides from Panamá, we assessed mating‐stage isolation in both virgin and once‐mated females, and found that female discrimination depends critically on mating status. Virgin females were almost invariably receptive, showing no tendency to discriminate against males from allopatric populations. By contrast, non‐virgin females were significantly more likely to reject foreign males than males from their own population. Male sexual motivation could not account for differences in either female sexual receptivity or male success in sperm transfer. Allopatric and sympatric males did not differ in number of spermatophores deposited as either a female’s first or second mate. Nonetheless, allopatric males achieved significantly lower sperm transfer success not only with choosy, non‐virgin females but also with virgin females. Given the lack of behavioral discrimination by virgin females, female receptivity was not the only factor influencing differences in sperm transfer success. Multivariate analysis of spermatophore morphology suggests that the higher failure rate of matings between allopatric males and virgin females resulted from population differences in sperm packet architecture. Overall, our findings indicate that assessment of discrimination against allopatric males that is limited to virgin females may seriously underestimate the contribution of female mate choice to reproductive isolation between populations.  相似文献   

15.
Males' evolutionary responses to experimental removal of sexual selection   总被引:7,自引:0,他引:7  
We evaluated the influence of pre- and post-copulatory sexual selection upon male reproductive traits in a naturally promiscuous species, Drosophila melanogaster. Sexual selection was removed in two replicate populations through enforced monogamous mating with random mate assignment or retained in polyandrous controls. Monogamous mating eliminates all opportunities for mate competition, mate discrimination, sperm competition, cryptic female choice and, hence, sexual conflict. Levels of divergence between lines in sperm production and male fitness traits were quantified after 38-81 generations of selection. Three a priori predictions were tested: (i) male investment in spermatogenesis will be lower in monogamy-line males due to the absence of sperm competition selection, (ii) due to the evolution of increased male benevolence, the fitness of females paired with monogamy-line males will be higher than that of females paired with control-line males, and (iii) monogamy-line males will exhibit decreased competitive reproductive success relative to control-line males. The first two predictions were supported, whereas the third prediction was not. Monogamy males evolved a smaller body size and the size of their testes and the number of sperm within the testes were disproportionately further reduced. In contrast, the fitness of monogamous males (and their mates) was greater when reproducing in a non-competitive context: females mated once with monogamous males produced offspring at a faster rate and produced a greater total number of surviving progeny than did females mated to control males. The results indicate that sexual selection favours the production of increased numbers of sperm in D. melanogaster and that sexual selection favours some male traits conferring a direct cost to the fecundity of females.  相似文献   

16.
Molecular correlates of reproductive isolation   总被引:2,自引:0,他引:2  
Evolution of reproductive isolation as a byproduct of genetic divergence in isolated populations is the dominant (albeit not exclusive) mode of speciation in sexual animals. But little is known about the factors linking speciation to general divergence. Several authors have argued that allopatric speciation should proceed more rapidly if isolated populations also experience divergent selection. Reproductive isolation between allopatric populations is not subject to direct selection; it can accumulate only by random drift or as a fortuitous byproduct of selection on other traits. Here I present a novel analysis of published data, demonstrating that pre- and postmating isolation of Drosophila species are more tightly correlated with allozyme divergence than with silent DNA divergence. Inasmuch as proteins are more subject to the action of natural selection than are silent DNA polymorphisms, this result provides broad support for a model of selection-mediated allopatric speciation.  相似文献   

17.
An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating‐prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre‐ and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers.  相似文献   

18.
The spermathecal complex ofPhlebotomus papatasi Scopoli (Diptera: Psychodidae) undergoes histological and physiological changes during its gonotropic cycle. The present histochemical study revealed a mucopolysaccharide secretory mass in the spermathecae of the newly emerged sandfly. Sperm competition occurs when two or more males compete to fertilize an ovum in the female reproductive tract. In this study, spermatophores of two or more competing males were deposited at the base of the spermathecal ducts, which originate from the female bursa copulatrix. This suggests that females play a role in sperm displacement, which is defined as any situation in which the last male to mate with a female fertilizes maximum number her eggs. A blood meal ingested by the female for ovary development and egg laying stimulates the release of sperm from the spermatophore. The spermatozoa then migrate to the lumen of the spermatheca. The ultrastructure of spermatozoa comprises a head with double-layered acrosomal perforatorium, an elongate nucleus, and the axoneme with a 9 + 9 + 0 flagellar pattern. This axomene differs from the aflagellate axoneme of other Psychodinae. Morphological changes, such as the casting off of the acrosomal membrane, and histological changes in the spermatophore are also described. Mating plugs that have been described previously in sandflies appear to be artefacts. Females ofP. papatasi may be inseminated more than once during each gonotrophic cycle, and additional inseminations may be necessary for each cycle. The relationships between the volumes of the sperm and the spermatheca were calculated to determine sperm utilization and fecundity ofP. papatasi. As the females ofP. papatasi mate polyandrously, the anatomical and physiological complexity of the spermathecal complex may be related to post-copulatory sexual selection.  相似文献   

19.
While sperm competition has been extensively studied, the mechanisms involved are typically not well understood. Nevertheless, awareness of sperm competition mechanisms is currently recognised as being of fundamental importance for an understanding of many behavioural strategies. In the yellow dung fly, a model system for studies of sperm competition, second male sperm precedence appears to result from a combination of sperm displacement and sperm mixing. Displacement was until recently thought to be directly from the female's sperm stores, the spermathecae (i.e. males were thought to ejaculate directly into these stores), and under male control. However, recent work indicates displacement is indirect (i.e. males do not ejaculate directly into the sperm stores) and that it is female-aided, although the evidence was not based on direct observation. Here, we used histological techniques to directly determine interactions during copula and sperm transfer. Our results are consistent with inference and clearly show that males ejaculate into the bursa copulatrix. Our data are also consistent with active female involvement in sperm displacement, which is indirect, and indicate the aedeagus may remove some spermatozoa from the bursa at the end of copula. In addition, evidence suggests females aid sperm transport to and from the spermathecae, possibly by muscular movement of a spermathecal invagination.  相似文献   

20.
Theory predicts that males have a limited amount of resources to invest in reproduction, suggesting a trade‐off between traits that enhance mate acquisition and those that enhance fertilization success. Here, we investigate the relationship between pre‐ and post‐copulatory investment by comparing the mating behaviour and reproductive morphology of four European and five North American populations of the dung fly Sepsis punctum (Diptera) that display a reversal of sexual size dimorphism (SSD). We show that the geographic reversal in SSD between the continents (male biased in Europe, female biased in North America) is accompanied by differential investment in pre‐ vs. post‐copulatory traits. We find higher remating rates in European populations, where larger males acquire more matings and consequently have evolved relatively larger testes and steeper hyper‐allometry with body size. American populations, in sharp contrast, display much reduced, if any, effect of body size on those traits. Instead, North American males demonstrate an increased investment in mate acquisition prior to copulation, with more mounting attempts and a distinctive abdominal courtship display that is completely absent in Europe. When controlling for body size, relative female spermathecal size is similar on both continents, so we find no direct evidence for the co‐evolution of male and female internal reproductive morphology. By comparing allopatric populations of the same species that apparently have evolved different mating systems and consequently SSD, we thus indirectly demonstrate differential investment in pre‐ vs. post‐copulatory mechanisms increasing reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号