首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Insect Biochemistry》1991,21(4):363-373
A prophenoloxidase was purified from blood cells of the crayfish Pacifastacus leniusculus. The purified proenzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and had a molecular mass of 76 kDa under both non-reducing and reducing conditions. The crayfish prophenoloxidase was a glycoprotein, with an isoelectric point of about 5.4.A 36 kDa serine proteinase, isolated and purified from crayfish blood cells (Aspán et al., 1990b, Insect Biochem.20, 709–718), could convert the 76 kDa prophenoloxidase to phenoloxidase by an apparent proteolytic cleavage, since the molecular masses of two active enzymes, phenoloxidases, were 60 and 62 kDa. A commercial serine proteinase, trypsin, activated prophenoloxidase to phenoloxidase, and as a result a 60 kDa protein was produced.In the blood cells of crayfish four serine proteinases or 3H-DFP binding proteins are present, with masses of 36, 38, 50 and 67 kDa. However, 3H-DFP labelling of proteins in blood cells lysate, prepared in its inactive form, only yielded labelled bands of 50 and 67 kDa, whereas addition of an elicitor to prophenoloxidase system activation, a β-1,3-glucan, resulted in the appearance of four 3H-DFP labelled proteins, with molecular masses of 67, 50, 38 and 36 kDa, respectively. Thus, the 36 kDa endogenous serine proteinase, the prophenoloxidase activating enzyme, ppA, may be present as an inactive precursor in crayfish blood cells. The 38 and 36 kDa proteinases could both cleave the chromogenic peptide S-2337 [Bz-Ile-Glu-(γ-O-Piperidyl)-Gly-Arg-p-nitroaniline], and specifically bind prophenoloxidase.These results show that crayfish prophenoloxidase, the terminal enzyme of the prophenoloxidase activating cascade, a proposed defence pathway in arthropod blood, can be converted to active enzyme by an apparent proteolytic cleavage, not only by a commercial proteinase, but also by an endogenous serine type proteinase.  相似文献   

2.
The prophenoloxidase activating system plays a major role in the defense mechanism of arthropods. In the present study, the phenoloxidase activity and its location in the hemolymph of the spiny lobster Panulirus argus is presented. Phenoloxidase activity was observed in the hemocyte lysate supernatant (HLS) and plasma after their incubation with trypsin. Higher amounts of trypsin were required to activate the HLS prophenoloxidase, due to the presence of a trypsin inhibitor in this fraction. Activation of prophenoloxidase was found when HLS was incubated with calcium, with an optimal pH between 7.5 and 8. This spontaneous activity is due to the prophenoloxidase activating enzyme, a serine proteinase that activates the prophenoloxidase once calcium ions were available. SDS was able to induce phenoloxidase activity in plasma and hemocyte fractions. Prophenoloxidase from HLS occurs as an aggregate of 300kDa. Electrophoretic studies combining SDS-PAGE and native PAGE indicate that different proteins produced the phenoloxidase activity found in HLS and plasma. Thus, as in most crustaceans, Panulirus argus contains a prophenoloxidase activating system in its hemocyte, comprising at least the prophenoloxidase activating enzyme and the prophenoloxidase. Finally, it is suggested that phenoloxidase activity found in plasma is produced by hemocyanin.  相似文献   

3.
Proteolytic enzymes are usually biosynthesized as somewhat larger inactive precursors known as zymogens. These zymogens must undergo an activation process, usually a limited proteolysis, to attain their catalytic activity. When the activating enzyme and the activated enzyme coincide, the process is an autocatalytic zymogen activation. In the present study, a kinetic analysis of the entire progress curve for the autocatalytic zymogen activation reactions is presented. On the basis of the kinetic equations, a novel procedure is developed to evaluate the kinetic parameters of the reactions. This procedure is particularly useful for the fast zymogen autoactivation reactions. As two examples, the novel procedure is used to analyse the autocatalytic activation of bovine trypsinogen and human blood coagulation factor XII (Hageman factor).  相似文献   

4.
Phenoloxidase in the hemolymph of Sarcophaga bullata larvae is present as an inactive proenzyme form. Localization studies indicate that the majority of the prophenoloxidase is present in the plasma fraction whereas only a minor fraction (about 4%) is present in the cellular compartments (hemocytes). Inactive prophenoloxidase can be activated by zymosan, not by either endotoxin or laminarin. This activation process is inhibited by the serine protease inhibitors, benzamidine and p-nitrophenyl-p~-guanidobenzoate. Exogenously added proteases, such as chymotrypsin and subtilisin, also activated the prophenoloxidase in the whole hemolymph but failed to activate the partially purified proenzyme. However, an activating enzyme isolated from the larval cuticle, which exhibits trypsinlike specificity, activated the partially purified prophenoloxidase. Inhibition studies and activity measurements also revealed the presence of a similar activating enzyme in the hemolymph. Thus, the phenoloxidase system in Sarcophaga bullata larval hemolymph seems to be comprised of a cascade of reactions. An endogenous protease inhibitor isolated from the larvae inhibited chymotrypsin-mediated prophenoloxidase activation but failed to inhibit the cuticular activating enzyme-catalyzed activation. Based on these studies, the roles of prophenoloxidase, endogenous activating proteases, and protease inhibitor in insect immunity are discussed.  相似文献   

5.
S J Saul  M Sugumaran 《FEBS letters》1986,208(1):113-116
Prophenoloxidase from the hemolymph of tobacco hornworm Manduca sexta can be activated by a specific activating enzyme found in the cuticle. Inhibition studies with benzamidine, diisopropyl phosphofluoridate and p-nitrophenyl-p'-guanidinobenzoate indicate that the activating enzyme is a trypsin-like serine protease. An endogenous protease inhibitor, isolated from the hemolymph of Manduca larvae, inhibits the prophenoloxidase activation mediated by this enzyme. These results indicate that the probable physiological role of endogenous protease inhibitor is to control the undesired activation of prophenoloxidase in the hemolymph.  相似文献   

6.
1. Three zymogens have been isolated from human gastric mucosae and two from the stomachs of the toad Caudiverbera caudiverbera. 2. Human zymogens I and III were immunologically related and cross-reacted with antisera prepared against porcine pepsinogen. The third, (II), showed no cross-reactivity. 3. Human zymogens I and III and toad zymogen ZII gave rise to two human pepsins and to a pepsin-like enzyme, respectively. 4. Human zymogen II (gastricsinogen) and toad zymogen ZI gave rise to human gastricsin and to a gastricsin-like enzyme respectively. 5. The toad enzymes showed much greater stability at neutral and alkaline pH values than the human enzymes.  相似文献   

7.
《Insect Biochemistry》1989,19(3):301-307
In Locusta migratoria, prophenoloxidase is present in the plasma and serum, but in reduced amounts relative to the haemocytes. This phenoloxidase activity cannot be induced by either heating or freezing and thawing and it is lost by heating at 70°C for 30 min. Both lipopolysaccharides and laminarin can elicit the prophenoloxidase activating system. These elicitors of prophenoloxidase activation are active in haemocyte lysate and in serum but never induce any phenoloxidase activity in plasma. In haemocyte lysate, the activating system is not heat resistant, and heating at 56°C for 30 min prior to incubation with laminarin or lipopolysaccharide precludes any phenoloxidase activity. Plasma contains a strong inhibitor of the prophenoloxidase activating system but serum does not. This inhibitor does not affect the phenoloxidase enzyme itself. The possible role of the activating system in immune recognition and the strategies evolved by parasites or pathogens to escape being recognized by their host are discussed.  相似文献   

8.
Many insects eat the green leaves of plants but excrete black feces in an as yet unknown mechanism. Insects cannot avoid ingesting pathogens with food that will be specifically detected by the midgut immune system. However, just as in mammals, many pathogens can still escape the insect midgut immune system and arrive in the hindgut, where they are excreted out with the feces. Here we show that the melanization of hindgut content induced by prophenoloxidase, a key enzyme that induces the production of melanin around invaders and at wound sites, is the last line of immune defense to clear bacteria before feces excretion. We used the silkworm Bombyx mori as a model and found that prophenoloxidase produced by hindgut cells is secreted into the hindgut contents. Several experiments were done to clearly demonstrate that the blackening of the insect feces was due to activated phenoloxidase, which served to regulate the number of bacteria in the hindgut. Our analysis of the silkworm hindgut prophenoloxidase discloses the natural secret of why the phytophagous insect feces is black and provides insight into hindgut innate immunity, which is still rather unclear in mammals.  相似文献   

9.
《Insect Biochemistry》1990,20(7):709-718
A proteinase was purified from crayfish haemocytes by affinity chromatography on heparin-sepharose and phenyl-sepharose, followed by DEAE-cellulose ion-exchange chromatography. This proteinase could mediate the conversion of prophenoloxidase (proPO) to its active form, phenoloxidase (PO), and its was therefore designated a prophenoloxidase activating enzyme, ppA.The purified ppA had a molecular mass of about 36,000 Da. Since ppA was a proteinase able to cleave chromogenic peptide substrates of trypsin, and serine proteinase inhibitors were strongly inhibitory towards ppA activity, the enzyme appeared to be a serine type proteinase. It exhibited maximal enzyme activity at neutral and slightly alkaline pH, and was sensitive to heat inactivation at 58°C.  相似文献   

10.
In the spiny lobster (Panulirus interruptus), unlike other crustaceans most of the prophenoloxidase (proPO) was detected in cell-free plasma (86.3%). In spite of its location, lobster proPO activating system has a similar activation mechanism to other crustacean proPO systems. Haemocyte lysate was able to activate the plasma proPO indicating location of the prophenoloxidase activating enzyme (PPAE) in haemocytes. Lobster haemocyte PPAE was isolated by affinity chromatography and its participation as activating enzyme was demonstrated. This enzyme is a serine-proteinase that transforms the inactive form (proPO) to an active one (phenoloxidase). The PPAE was also present in the cell-free supernatant of haemocytes previously incubated with Vibrio alginolyticus.  相似文献   

11.
《Insect Biochemistry》1989,19(1):47-57
The ability of bacterial cell walls to activate the prophenoloxidase cascade was tested using Blaberus craniifer, Clitumnus extradentatus, Locusta migratoria and Schistocerca gregaria. Effects of modifying components of the cell wall on the activation of prophenoloxidase in a haemocyte lysate supernatant preparation were examined. Peptidoglycan was found to be an important factor for the activating ability of Gram-positive bacteria. Lysozyme treatment of Micrococcus luteus cell wall showed that the soluble peptidoglycan was the active component. Teichoic acid isolated from Staphylococcus aureus did not activate the prophenoloxidase cascade. However, removal of teichoic acid from the cell wall enhanced activation, probably by exposure of peptidoglycan. Several Escherichia coli K-12 strains, with differing lipopolysaccharide compositions, were also tested for activation of prophenoloxidase. Differences in the ability of the various strains to activate the prophenoloxidase cascade were apparent although no clear conclusions could be made. The role of capsular polysaccharides was investigated too, using two Klebsiella pneumoniae strains, a noncapsulate mutant and its capsulate parent strain. The capsular polysaccharide conferred an increased activating potential. This difference in activation was lost by removal of the capsule from the parent strain. These results are interpreted in terms of the nonself recognition process in insect haemolymph.  相似文献   

12.
Zymogen-activating factors in the mouse were investigated by two-dimensional electrophoresis. Mouse pancreatic zymogens--trypsinogen-I group (Try G-I group), trypsinogen-II (Try G-II), and chymotrypsinogen (Chy G)--were purified using DEAE-cellulose column chromatography. Analysis by two-dimensional electrophoresis, using the purified zymogens as substrates, revealed enterokinase isozymes and chymotrypsinogen-activating factors in both the intestinal extract and luminal fluid. Mouse enterokinase was separated into at least two bands in the first-dimensional gel, each able to activate both trypsinogens Try G-I group and Try G-II. Chymotrypsinogen-activating factors were separated into several bands in the first-dimensional gel. Some activating factors showed mobilities similar to those of mouse enterokinase isozymes. Moreover, other activating factors that can activate chymotrypsinogen were present only in the more anodal area of the first-dimensional gel. These findings indicate that at least two enterokinases and several chymotrypsinogen-activating factors play an important role in the process of activating digestive enzymes.  相似文献   

13.
Summary A monospecific antibody against -1,3-glucan recognition protein (a 62 kDa protein) of the larval silkworm prophenoloxidase activating system was used to study the localization of the protein. Among tissues from 5th instar larvae, only hemocytes and plasma were shown to contain a 62 kDa polypeptide immunoreactive with the antibody. Ultra-thin sections of the hemocytes were stained by an indirect immunogold staining method. Labelling occurred in the granules and cytoplasm of granulocytes and in the spherules and cytoplasm of spherulocytes. It was most conspicuous in granules of granulocytes and uniformly labelled spherules of spherulocyte, whereas no labelling was evident in prohemocytes, plasmatocytes and oenocytoids. The results are discussed in relation to the mode of recognition of fungi as non-self in insect hemocoel.  相似文献   

14.
The adhesion of strains of Pseudomonas aeruginosa and Proteus mirabilis to the plasmatocytes and granular cells of nonimmune larval Galleria mellonella was influenced by and varied with the type of carbohydrate. Laminarin enhanced prophenoloxidase activation and bacterial adhesion to the hemocytes whereas sucrose suppressed both activities. For all other sugars there was no correlation between bacterial adhesion to the hemocytes and phenoloxidase activity. It is proposed that bacterial adhesion to the hemocytes may be mediated by both lectinlike binding and components of the prophenoloxidase activating system acting like opsonins.  相似文献   

15.
16.
Studies on prophenoloxidase activation in the mosquito Aedes aegypti L   总被引:5,自引:0,他引:5  
This study, the first of its kind in a mosquito vector species, demonstrates the feasibility of studying prophenoloxidase activation in an insect containing not more than a few microliters of hemolymph. Mosquito phenoloxidase was found to be in an inactive proenzyme form, prophenoloxidase. Mosquito prophenoloxidase required bivalent cation for its activation; Ca2+ was found to be the most efficient for activation. Concomitant amidase activity was also observed prior to phenoloxidase activity. Through Western blotting, using a cross-reactive silkworm antiprophenoloxidase antibody, our results strongly suggest that mosquito prophenoloxidase activation resulted from limited proteolysis. Protease inhibitor studies reinforced this contention showing the involvement of (a) serine protease(s) with trypsin-like activity in the activation of mosquito prophenoloxidase.  相似文献   

17.
Serine proteases play an important role in activation of prophenoloxidase (proPO), a critical enzyme in the production of melanin. We tested the effect of knockdown of gene expression for five clip domain serine proteases on melanization of abiotic targets in Anopheles gambiae. Knockdown of CLIPB4 resulted in a striking lack of melanization of Sephadex beads while knockdown of CLIPB8 caused a strong shift towards incompletely melanized beads. Knockdown of CLIPB1, B9 and B10 had lesser effects. CLIPB4 and CLIPB8 are strong candidates for activating enzymes in the proPO enzymatic cascade.  相似文献   

18.
Prophenoloxidase has been successfully obtained from the haemolymph of the cockroach Periplaneta americana using cane sugar saline solution. The proenzyme was activated by various exogenously added proteases such as chymotrypsin, trypsin, subtilisin and thermolysin. Thermolysin was found to be the greatest activator, followed by chymotrypsin and subtilisin. Chymotrypsin activation showed a lag period when compared with the other proteases tested, indicating that activation by chymotrypsin followed an indirect path, whereas, subtilisin and thermolysin activated the proenzyme directly.Exogenously added protease inhibitor showed inhibition towards protease-mediated prophenoloxidase activation. Benzamidine inhibited chymotrypsin and trypsin activation, whereas soybean trypsin inhibitor inhibited trypsin. In situ inhibitor isolated from the haemocytes of Periplaneta americana inhibited the prophenoloxidase activation and showed evidence for the presence of a built-in inhibition system for the release of the components of the prophenoloxidase activating system of P. americana. Electrophoretic localization of activated phenoloxidase showed two bands, suggesting the dimeric condition of high mol. wt prophenoloxidase.  相似文献   

19.
Proteolytic enzymes are synthesized as inactive precursors, or "zymogens," to prevent unwanted protein degradation, and to enable spatial and temporal regulation of proteolytic activity. Upon sorting or appropriate compartmentalization, zymogen conversion to the active enzyme typically involves limited proteolysis and removal of an "activation segment." The sizes of activation segments range from dipeptide units to independently folding domains comprising more than 100 residues. A common form of the activation segment is an N-terminal extension of the mature enzyme, or "prosegment," that sterically blocks the active site, and thereby prevents binding of substrates. In addition to their inhibitory role, prosegments are frequently important for the folding, stability, and/or intracellular sorting of the zymogen. The mechanisms of conversion to active enzymes are diverse in nature, ranging from enzymatic or nonenzymatic cofactors that trigger activation, to a simple change in pH that results in conversion by an autocatalytic mechanism. Recent X-ray crystallographic studies of zymogens and comparisons with their active counterparts have identified the structural changes that accompany conversion. This review will focus upon the structural basis for inhibition by activation segments, as well as the molecular events that lead to the conversion of zymogens to active enzymes.  相似文献   

20.
Starting from a simple general reaction mechanism of activation of aspartic proteinase zymogens involving an uni- and a bimolecular simultaneous route, the time course equation of the concentration of the zymogen and of the activated enzyme have been derived. From these equations, an analysis quantifying the relative contribution to the global process of the two routes has been carried out for the first time. This analysis suggests a way to predict the time course of the relative contribution as well as the effect of the initial zymogen and activating enzyme concentrations, on the relative weight. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed. Finally, we apply some of our results to experimental data obtained by other authors in experimental studies of the activation of some aspartic proteinase zymogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号