首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
Chagas disease is a parasitic infection that is a significant public health problem in Latin America. The mechanisms responsible for susceptibility to the infection and the mechanisms involved in the development of cardiac and digestive forms of chronic Chagas disease remain poorly understood. However, there is growing evidence that differences in susceptibility in endemic areas may be attributable to host genetic factors. The aim of this overview was to analyze the genetic susceptibility to human Chagas disease, particularly that of single nucleotide polymorphisms of cytokine genes. A review of the literature was conducted on the following databases: PubMed/MEDLINE and Scopus. The search strategy included using the following terms: "Cytokines", "Single Nucleotide Polymorphisms" and "Chagas Disease". After screening 25 citations from the databases, 19 studies were selected for the overview. A critical analysis of the data presented in the articles suggests that genetic susceptibility to Chagas disease and chronic Chagas cardiomyopathy is highly influenced by the complexity of the immune response of the host. Follow-up studies based on other populations where Chagas disease is endemic (with distinct ethnic and genetic backgrounds) need to be conducted. These should use a large sample population so as to establish what cytokine genes are involved in susceptibility to and/or progression of the disease.  相似文献   

2.
BACKGROUND: Recently new aspects of the immunopathology of Chagas disease have been described in patients infected with HIV and unusual clinical manifestations such as cutaneous lesions, involvement of central nervous system and/or serious cardiac lesions related to the reactivation of the parasite have been reported. Two uncloned Trypanosoma cruzi strains previously isolated from chronic chagasic patients with HIV co-infection were studied in order to evaluate the impact of the immunosuppression on the genetic diversity of the parasite. RESULTS: We have exploited an experimental model to determine whether genetically distinct populations appear after immunosuppression as a consequence of in vivo selection or in vitro propagation. The in vitro and in vivo conditions have allowed us to study the selected populations. The first strain was isolated from a case of reactivation of Chagas disease in a patient which presented four cerebral lesions. It was possible to demonstrate that the patient was infected with at least three distinct populations of T. cruzi. The population, recovered after immunosuppression, in mice was genetically divergent from the primary human isolate. The second strain, isolated from a hemophiliac/HIV positive patient presenting cardiac manifestation of Chagas disease showed no marked genetic difference after experimental immunosuppression. CONCLUSION: The immunological condition of the patient, associated or not to the reactivation of the infection, and also the strain of the parasite may have an important role during the course of the disease. The in vivo mechanism that generates parasite genetic variability or the participation of the selection under stress conditions will require further investigation.  相似文献   

3.
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or even overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but genetic variation of both the host and parasite is likely to be important. Here, Andréa M. Macedo and Sérgio D.J. Pena review the evidence showing a role for the genetic constitution of T. cruzi in determining the clinical characteristics of Chagas disease, and propose a ;clonal-histotropic model' for the pathogenesis of this disease.  相似文献   

4.
Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and, consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT forms presented earlier production of proinflammatory cytokine TNF-α and later of IFN-γ by both T cells subpopulations. This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute phase. On the other hand, infection with MT forms result in an early production of IFN-γ, with subsequent control in the production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary, our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may influence relevant biological aspects of chronic Chagas disease.  相似文献   

5.
Chagas Disease Etiology: Autoimmunity or Parasite Persistence?   总被引:11,自引:0,他引:11  
The question of the cause and the mechanisms of disease in chronic Trypanosoma cruzi infection continues to attract debate. Chagas disease, characterized by cardiomyopathy and/or megasyndrome involving the esophagus or colon, occurs in approximately 30% of individuals with chronic T. cruzi infections. Although the pathogenesis of Chagas disease is often attributed to autoimmune mechanisms, definitive proof of anti-self responses as the primary cause of disease in T. cruzi-infected hosts is lacking. Rick Tarleton and Lei Zhang here consider an alternative view that the primary cause of chronic Chagas disease is the failure of the host to clear the infection, resulting in infection-induced, immune-mediated tissue damage.  相似文献   

6.
There are approximately 7.8 million people in Latin America, including Chile, who suffer from Chagas disease and another 28 million who are at risk of contracting it. Chagas is caused by the flagellate protozoan Trypanosoma cruzi. It is a chronic disease, where 20%-30% of infected individuals develop severe cardiopathy, with heart failure and potentially fatal arrhythmias. Currently, Chagas disease treatment is more effective in the acute phase, but does not always produce complete parasite eradication during indeterminate and chronic phases. At present, only nifurtimox or benznidazole have been proven to be superior to new drugs being tested. Therefore, it is necessary to find alternative approaches to treatment of chronic Chagas. The current treatment may be rendered more effective by increasing the activity of anti-Chagasic drugs or by modifying the host's immune response. We have previously shown that glutathione synthesis inhibition increases nifurtimox and benznidazole activity. In addition, there is increasing evidence that cyclooxygenase inhibitors present an important effect on T. cruzi infection. Therefore, we found that aspirin reduced the intracellular infection in RAW 264.7 cells and, decreased myocarditis extension and mortality rates in mice. However, the long-term benefit of prostaglandin inhibition for Chagasic patients is still unknown.  相似文献   

7.
Infection with Trypanosoma cruzi, the etiologic agent in Chagas disease, may result in heart disease. Over the last decades, Chagas disease endemic areas in Latin America have seen a dietary transition from the traditional regional diet to a Western style, fat rich diet. Previously, we demonstrated that during acute infection high fat diet (HFD) protects mice from the consequences of infection-induced myocardial damage through effects on adipogenesis in adipose tissue and reduced cardiac lipidopathy. However, the effect of HFD on the subsequent stages of infection – the indeterminate and chronic stages – has not been investigated. To address this gap in knowledge, we studied the effect of HFD during indeterminate and chronic stages of Chagas disease in the mouse model. We report, for the first time, the effect of HFD on myocardial inflammation, vasculopathy, and other types of dysfunction observed during chronic T. cruzi infection. Our results show that HFD perturbs lipid metabolism and induces oxidative stress to exacerbate late chronic Chagas disease cardiac pathology.  相似文献   

8.
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or, occasionally, overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but it is likely that the genetic variability of both the host and the parasite are of importance. In this work we review the the genetic structure of T. cruzi populations and analyze the importance of genetic variation of the parasite in the pathogenesis of the disease under the light of the histotropic-clonal model.  相似文献   

9.
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi, and although over 100 years have passed since the discovery of Chagas disease, it still presents an increasing problem for global public health. A plethora of information concerning the chronic phase of human Chagas disease, particularly the severe cardiac form, is available in the literature. However, information concerning events during the acute phase of the disease is scarce. In this review, we will discuss (1) the current status of acute Chagas disease cases globally, (2) the immunological findings related to the acute phase and their possible influence in disease outcome, and (3) reactivation of Chagas disease in immunocompromised individuals, a key point for transplantation and HIV infection management.  相似文献   

10.
Understanding the pathogenic mechanisms in chronic Chagas disease, a major cause of morbidity and mortality in Latin America, is essential for the design of rational therapeutic strategies. In this paper we show that the development of Chagas disease is a consequence of a long-term and complex relationship between parasite persistence and maladapted homeostatic mechanisms in the host which leads to pathologic changes. We performed a retrospective study on 50 patients with chronic Chagas disease and 50 healthy control individuals. The specific immune response was detected by ELISA and IHA tests using autochthonous antigens, inflammatory process with the cytokine tumour necrosis factor (TNF)-alpha and nitric oxide (NO), and antioxidant protection with glutathione peroxidase and superoxide dismutase (SOD) levels. We developed generalised linear modelling procedures to assess simultaneously which explanatory variables and/or their interactions better explained disease severity in patients. Our results show the existence of a strong relationship between anti-Trypanosoma cruzi levels and chronic Chagas disease (P<0.0001). Taken together, the statistical data indicate both cumulative and complementary effects, where the increase in TNF-alpha (P=0.004) and NO (P=0.005) levels correlated with a reduction in glutathione peroxidase (P=0.0001) and SOD (P=0.01) levels drives the disease pathology in chronically infected patients. Our findings may have important implications for understanding host susceptibility to develop severe chronic infectious disease. In addition we show putative targets for the design of new therapeutic strategies to prevent disease progression, considering both specific treatment against the aetiological agent and modulation of the different immunopathological reactions in chronically infected individuals with chronic Chagas disease.  相似文献   

11.
Chagas disease is currently endemic to 21 Latin-American countries and has also become a global concern because of globalization and mass migration of chronically infected individuals. Prophylactic and therapeutic vaccination might contribute to control the infection and the pathology, as complement of other strategies such as vector control and chemotherapy. Ideal prophylactic vaccine would produce sterilizing immunity; however, a reduction of the parasite burden would prevent progression from Trypanosoma cruzi infection to Chagas disease. A therapeutic vaccine for Chagas disease may improve or even replace the treatment with current drugs which have several side effects and require long term treatment that frequently leads to therapeutic withdrawal.Here, we will review some aspects about sub-unit vaccines, the rationale behind the selection of the immunogen, the role of adjuvants, the advantages and limitations of DNA-based vaccines and the idea of therapeutic vaccines. One of the main limitations to advance vaccine development against Chagas disease is the high number of variables that must be considered and the lack of uniform criteria among research laboratories. To make possible comparisons, much of this review will be focused on experiments that kept many variables constant including antigen mass/doses, type of eukaryotic plasmid, DNA-delivery system, mice strain and sex, lethal and sublethal model of infection, and similar immunogenicity and efficacy assessments.  相似文献   

12.
Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.  相似文献   

13.
14.
牙周炎是一种由菌斑引起的以牙周软组织和牙槽骨破坏为特征的慢性感染性疾病,其病因尚不明确,目前普遍认为是细菌 感染和宿主防御相互作用的结果,受遗传有关的宿主易感性、环境、行为因素的影响。致病菌的存在是牙周炎发生的必要条件,基 因因素影响宿主在应对细菌免疫应答过程中的强度,从而导致不同程度的牙周组织破坏。许多有关牙周炎基因方面的研究把目 光对准了在免疫调节和新陈代谢中发挥重要作用的物质的基因多态性,比如细胞因子、细胞表面受体、趋化因子、酶以及其他与 抗原识别有关的物质。FcrR 就是其中之一。FcrR 属于免疫球蛋白超家族,主要有FcrRI、FcrRII、FcrRIII 三类,大量研究表明 FcrRIIA 基因多态性与牙周炎的易感性有关。在针对不同种族的调查中,Fc酌RIIA 基因多态性与牙周炎的易感性的研究结果不尽 相同。也提示我们基因多态性的等位基因频率在各个种族之间存在差异,这种基因标识在界定牙周炎病因和预后方面的相关应 用会变得有所不同。基因诊断将会成为未来牙周病预防和治疗的新方向。本文主要对近年来FcrRIIA 基因多态性与牙周炎关系 的研究进展进行了综述。  相似文献   

15.
Low YL  Tai ES 《Mutation research》2007,622(1-2):7-13
Socioeconomic development has resulted in an epidemiologic transition which has involved an increase in mortality and morbidity from chronic non-communicable diseases. Cardiovascular disease is one such disease. The rapidity with which this transition has occurred suggests that genetic factors are unlikely to be responsible. However, studies in twins suggest significant heritability for cardiovascular disease and its associated risk factors. We present data showing diet-gene interactions involving polymorphisms at the PPARA and PLIN loci. These data support the hypothesis that chronic diseases such as cardiovascular disease are a consequence of a complex interplay of genetic and environmental factors, of which diet plays an important role. They suggest that the effects of diet on chronic disease may be masked by heterogeneity of effect related to genetic variability between individuals and that consideration of diet-gene interactions may contribute to our understanding of the pathogenesis of cardiovascular disease. The identification of diet-gene interactions offers us an opportunity to develop dietary interventions that will obviate the effects of genetic factors on the risk of disease. In this way, we may be able to develop personalized dietary recommendations that optimize the outcome for the individual concerned. Nevertheless, while existing data points to the value of these studies, significant challenges need to be met to ensure that our conclusions are scientifically valid.  相似文献   

16.
Dysfunctions in the immune system, due to genetics, disease or environmental factors, can cause bacterial colonization and chronic inflammation. In cystic fibrosis and chronic obstructive pulmonary disease, respiratory infections can initiate inflammation of the airway. We propose a system of nonlinear ordinary differential equations to describe interactions between macrophages, both inflammatory and anti-inflammatory cytokines, and bacteria. Small changes in parameters governing inflammatory cytokine production and macrophage sensitivity to cytokines result in dramatically different model behaviors. When the immune system is functioning properly, a non-aggressive pathogen will not provide a sufficient trigger to initiate chronic inflammation, however, in disease positive feedback of the inflammatory cytokine can induce chronic inflammation even after a bacterial infection has been resolved. In addition, if the macrophage population is more sensitive to inflammatory cytokines small perturbations initiated by bacteria will also lead to chronic inflammation. We have found nonaggressive bacteria are able to initiate chronic inflammation and propose why anti-inflammatory cytokine therapy may not be effective in resolving this inflammation.  相似文献   

17.
A Leishmania model to explain microbial virulence in chronic infectious diseases is proposed. All these diseases progress from infection to symptomatic phase to host death or recovery. The outcome of each phase is depicted to result from the interactions of a distinct group of parasite molecules with a specific host immune compartment. The first group consists of invasive/evasive determinants, which are largely parasite cell surface and secreted molecules. Their activities help parasites establish infection by overcoming host immunologic and non-immunologic barriers. These determinants do not cause disease per se, but are indispensable for infection necessary for the development of a disease-state. The second group of parasite molecules consists of "pathoantigenic" determinants – unique parasite epitopes present often within otherwise highly conserved cytoplasmic molecules. Immune response against these determinants is thought to result in immunopathology manifested as clinical signs or symptoms, namely the virulent phenotype. The third group of parasite molecules is hypothetically perceived as vaccine determinants. Their interactions with the host immune system lead to the elimination or reduction of parasites to effect a clinical cure. Differential expression of these determinants alone by parasites may alter their interactions with the hosts. Virulent phenotype is consequently presented as a spectrum of manifestations from asymptomatic infection to fatality. A secondary level of regulation lies in host genetic and environmental factors. The model suggests that different parasite determinants may be targeted by different strategies to achieve more effective control of leishmaniasis and other similar diseases.  相似文献   

18.
Despite considerable success of genome wide association (GWA) studies in identifying causal variants for many human diseases, their success in unraveling the genetic basis to complex diseases has been more mitigated. Pathogen population structure may impact upon the infectious phenotype, especially with the intense short-term selective pressure that drug treatment exerts on pathogens. Rigorous analysis that accounts for repeated measures and disentangles the influence of genetic and environmental factors must be performed. Attempts should be made to consider whether pathogen diversity will impact upon host genetic responses to infection.We analyzed the heritability of two Plasmodium falciparum phenotypes, the number of clinical malaria episodes (PFA) and the proportion of these episodes positive for gametocytes (Pfgam), in a family-based cohort followed for 19 years, during which time there were four successive drug treatment regimes, with documented appearance of drug resistance. Repeated measures and variance components analyses were performed with fixed environmental, additive genetic, intra-individual and maternal effects for each drug period. Whilst there was a significant additive genetic effect underlying PFA during the first drug period of study, this was lost in subsequent periods. There was no additive genetic effect for Pfgam. The intra-individual effect increased significantly in the chloroquine period.The loss of an additive genetic effect following novel drug treatment may result in significant loss of power to detect genes in a GWA study. Prior genetic analysis must be a pre-requisite for more detailed GWA studies. The temporal changes in the individual genetic and the intra-individual estimates are consistent with those expected if there were specific host-parasite interactions. The complex basis to the human response to malaria parasite infection likely includes dominance/epistatic genetic effects encompassed within the intra-individual variance component. Evaluating their role in influencing the outcome of infection through host genotype by parasite genotype interactions warrants research effort.  相似文献   

19.
Infection with hepatitis C virus (HCV) is a major cause of chronic liver disease. Hepatic fibrosis may develop in subjects with chronic HCV infection, culminating in cirrhosis and an increased risk of hepatocellular carcinoma. The rate of development of fibrosis varies substantially between individuals; while it is influenced by a number of demographic and environmental factors, these account for only a small proportion of the variability.There are no clinical markers or tests that predict the rate of fibrosis progression in an individual subject. Thus, there has been increasing interest in the influence of host genetic factors on the rate of disease progression, and whether a genetic signature can be developed to reliably identify individuals at risk of severe disease. Numerous case-control, candidate gene, allele-association studies have examined the relationship between host single nucleotide polymorphisms or other genetic mutations and fibrosis in patients with chronic HCV infection. However, these studies have generally been irreproducible and disappointing. As seen with genetic studies for other diseases, small study cohorts and poor study design have contributed to limited meaningful findings. The successful determination of genetic signatures for fibrosis progression in chronic HCV will require multicenter collaborations using genome-wide association studies, with large, phenotypically well-defined sample sets. While these studies will require a significant financial commitment, a successful outcome offers the potential for personalized therapy and better patient management.  相似文献   

20.
The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded-and led to-gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号