首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of water stress were investigated in two Tunisian Medicago truncatula populations collected from arid (Mt-173) and sub-humid (Mt-664) climates and two Tunisian M. laciniata populations originating from arid (Ml-173) and semi-arid (Ml-345) regions. After a pre-treatment phase (24 days after sowing, DAS) of watering at 100% of field capacity (FC), the plants were either irrigated at 100% FC or at only 33% FC. After 12 days of treatment (36 DAS), one lot of dehydrated plants was rewatered at 100% FC. A final harvest was carried out after 24 days of treatment (48 DAS). Measured parameters were total dry weight (TDW), root shoot ratio (RSR), leaf relative water content (RWC), osmotic potential (OP), photosynthetic parameters (CO2 net assimilation A, stomatal conductance gs and transpiration E), malondialdehyde (MDA) concentration and leaf contents in inorganic (Na+ and K+) and organic solutes (proline and soluble sugars). Under water deficit conditions, compared to M. laciniata, M. truncatula populations showed a higher reduction in TDW, A, gs and RWC associated with a higher increase in MDA concentration. Thus, the relative tolerance of M. laciniata populations to water shortage would be related to their lower intrinsic growth rate and stomatal control of gas exchange. TDW, A, gs, E and RWC were more decreased by water deficit in Ml-345 than in Ml-173. Drought tolerance of Ml-173 was found to be associated with a more pronounced decrease of OP and a lower reduction in RWC due to the accumulation of solutes such as proline, soluble sugars and K+. In addition, Ml-173 showed the highest water use efficiency values (WUE) and the lowest MDA concentrations under water deficit stress.  相似文献   

2.
The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.  相似文献   

3.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

4.
Cuttings of Populus cathayana Rehd, originating from three triploid and one diploid populations with the same parents but different gamete origins, were used to examine physiological responses to drought stress and rewatering by exposure to three progressive water regimes. Progressive drought stress significantly decreased the leaf relative water content (RWC), photosynthesis, and chlorophyll fluorescence parameters, and increased the relative electrolyte leakage, malondialdehyde (MDA), free proline (Pro), and antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, in the four populations evaluated. However, compared to the diploid population, triploid populations showed lower relative electrolyte leakage and MDA, higher RWC and Pro content, and more efficient photosynthesis and antioxidant systems under the same water regime. Our data indicated that triploid populations possessed more efficient protective mechanisms than that of diploid population with gradually increasing drought stress. Moreover, some triploid genotypes were less tolerant to water stress than that of diploids due to large intrapopulation overlap.  相似文献   

5.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

6.
Soil moisture is the main limiting factor for vegetation growth at shell ridges in the Yellow River Delta of China. The objective of this study was to explore the soil moisture response of photosynthetic parameters and transpiration in Tamarix chinensis Lour., a dominant species of shell ridges. Leaf photosynthetic light-response parameters and sap flow were measured across a gradient of relative soil water content (RWC), from drought (23%) to waterlogging (92%) conditions. Leaf photosynthetic efficiency and stem sap flow of T. chinensis showed a clear threshold response to soil moisture changes. Leaf net photosynthetic rate, water-use efficiency (WUE), light-saturation point, apparent quantum yield, maximum net photosynthetic rate, and dark respiration rate peaked at moderately high RWC, decreasing towards high and low values of RWC. However, peak or bottom RWC values substantially differed for various parameters. Excessively high or low RWC caused a significant reduction in the leaf photosynthetic capacity and WUE, while the high photosynthetic capacity and high WUE was obtained at RWC of 73%. With increasing waterlogging or drought stress, T. chinensis delayed the starting time for stem sap flow in the early morning and ended sap flow activity earlier during the day time in order to shorten a daily transpiration period and reduce the daily water consumption. The leaf photosynthetic capacity and WUE of T. chinensis were higher under drought stress than under waterlogging stress. Nevertheless, drought stress caused a larger reduction of daily water consumption compared to waterlogging, which was consistent with a higher drought tolerance and a poor tolerance to waterlogging in this species. This species was characterized by the low photosynthetic capacity and low WUE in the range of RWC between 44 and 92%. The RWC of 49–63% was the appropriate range of soil moisture for plant growth and efficient physiological water use of T. chinensis seedlings.  相似文献   

7.
Water relations and photosynthetic characteristics of plants of Lycium nodosum grown under increasing water deficit (WD), saline spray (SS) or saline irrigation (SI) were studied. Plants of this perennial, deciduous shrub growing in the coastal thorn scrubs of Venezuela show succulent leaves which persist for approx. 1 month after the beginning of the dry season; leaf succulence is higher in populations closer to the sea. These observations suggested that L. nodosum is tolerant both to WD and salinity. In the glasshouse, WD caused a marked decrease in the xylem water potential (psi), leaf osmotic potential (psi(s)) and relative water content (RWC) after 21 d; additionally, photosynthetic rate (A), carboxylation efficiency (CE) and stomatal conductance (gs) decreased by more than 90 %. In contrast, in plants treated for 21 d with a foliar spray with 35 per thousand NaCl or irrigation with a 10 % NaCl solution, psi and RWC remained nearly constant, while psi(s) decreased by 30 %, and A, CE and gs decreased by more than 80 %. An osmotic adjustment of 0.60 (SS) and 0.94 MPa (SI) was measured. Relative stomatal and mesophyll limitations to A increased with both WD and SS, but were not determined for SI-treated plants. No evidence of chronic photoinhibition due to any treatment was observed, since maximum quantum yield of PSII, Fv/Fm, did not change with either drought in the field or water or salinity stress in the glasshouse. Nevertheless, WD and SI treatments caused a decrease in the photochemical (qP) and an increase in the non-photochemical (qN) quenching coefficients relative to controls; qN was unaffected by the SS treatment. The occurrence of co-limitation of A by stomatal and non-stomatal factors in plants of L. nodosum may be associated with the extended leaf duration under water or saline stress. Additionally, osmotic adjustment may partly explain the relative maintenance of A and gs in the SS and SI treatments and the tolerance to salinity of plants of this species in coastal habitats.  相似文献   

8.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

9.
Endophyte-infected (EI) seeds of Lolium perenne L. were used to attain endophyte-free (EF) population by heating the seeds at 43°C for 15 min and then 57°C for 25 min. Relative water content (RWC), chlorophyll, soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant. Under severe stress, RWC of EI leaf was significantly higher than that of EF leaf, i.e. EI plants took more advantages over EF plants in water-holding ability. Under mild stress, endophyte could enhance soluble sugars in host plants to improve their osmotic ability. With stress intensification, the improvement of endophyte no longer existed, and more photosynthetic products (such as starch) accumulated in EI plants to survive through the undesirable conditions. In the next spring, EI populations will recover more rapidly than EF populations. The biomass of a population is closely related to its photosynthesis. Under severe stress, EI population significantly accumulated more biomass than EF population. As far as photosynthetic pigments were concerned, contents of Chla, Chlb and Car of EI plants were close to those of EF plants, which suggested that endophyte infection didn’t alleviate photosynthetic pigments from being destroyed by drought stress, and endophyte might improve photosynthesis ability of its host plant in other ways.  相似文献   

10.
Endophyte-infected fED seeds of Lolium perenne L.were used to attain endophyte-free fED population by heating the seeds at 43℃ for 15 min and then 57℃ for 25 min.Relative water content(RWC),chlorophyll,soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant.Under severe stress.RWC of EI leaf was significantly higher than that Of EF leaf,i.e.EI plants took more advantages over EF plants in water-holding ability.Under mild stress,endophytc could enhance soluble sugars in host plants to improve their osmotic ability.With stress intensification,the improvement of endophyte no longer existed,and more photosynthetic products(such as starch)accumulated in EI plants to survive through the undesirable condidons.In the next spring,EI populations will recover more rapidly than EF populations.The biomass of a population is closely related to its photosynthesis.Under severe stress,EI population significantly accumulated more biomass than EF population.As far as photosynthetic pigments were concerned,contents of Chla,Chlb and Car of EI plants were close to those of EF plants,which suggested that endophyte infection didn't alleviate photosynthetic pigments from being destroyed by drought stress,and endophyte might improve photosynthesis ability of its host plant in other ways.  相似文献   

11.
12.
Aims Poplars grown in North China may experience water-deficient periods in their life cycle. The aim of the present paper was to quantify the response of three clones to different watering regimes and to determine which clone among the three is the best adapted to drought conditions.Methods Three hybrid poplar clones (clone DN-34, R-247 and OP-367) were used in the present experiment. The seedlings of the three clones were grown under four watering regimes: control (well watered, 100% field water capacity (FC)) and three drought treatments (drought stress I, 50% FC; drought stress II, 40% FC; drought stress III, 30% FC). Changes in morphological, physical and biochemical indicators of the three hybrid poplar clones were investigated.Important findings Drought treatment (50%, 40% and 30% FC) decreased net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (gs), shoot height, total biomass and chlorophyll (Chl) content in all the three clones and it increased activities of antioxidant enzymes and free proline content. The highest values of the above-mentioned morphological and physiological parameters were recorded in clone OP-367 under 30% FC, followed by clone DN-34 and R-247. Relative leaf water content (RWC) and stem diameter (sd) markedly declined in clone R-247 and DN-34 under drought stress I, II and III, whereas RWC and sd declined in clone OP-367 only under drought stress II and III. Clone OP-367 had more RWC and sd than DN-34 and R-247. Only the 30% FC induced an increase in the root-to-shoot ratio (rs) and water use efficiency (WUE) in all the three clones. OP-367 was the most efficient clone in water absorption and use, for plants of the clone had the highest values of rs and WUE. Our data demonstrate that among the three clones, OP-367 was better able to maintain photosynthesis and growth and lower the damage caused by drought.  相似文献   

13.
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.  相似文献   

14.
Endophyte-infected (EI) seeds of Lolium perenne L. were used to attain endophyte-free (EF) population by heating the seeds at 43°C for 15 min and then 57°C for 25 min. Relative water content (RWC), chlorophyll, soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant. Under severe stress, RWC of EI leaf was significantly higher than that of EF leaf, i.e. EI plants took more advantages over EF plants in water-holding ability. Under mild stress, endophyte could enhance soluble sugars in host plants to improve their osmotic ability. With stress intensification, the improvement of endophyte no longer existed, and more photosynthetic products (such as starch) accumulated in EI plants to survive through the undesirable conditions. In the next spring, EI populations will recover more rapidly than EF populations. The biomass of a population is closely related to its photosynthesis. Under severe stress, EI population significantly accumulated more biomass than EF population. As far as photosynthetic pigments were concerned, contents of Chla, Chlb and Car of EI plants were close to those of EF plants, which suggested that endophyte infection didn’t alleviate photosynthetic pigments from being destroyed by drought stress, and endophyte might improve photosynthesis ability of its host plant in other ways. __________ Translated from Acta Ecologica Sinica, 2005, 25 (2) [译自: 生态学报, 2005, 25(2)]  相似文献   

15.
Shoot water relations and morphological responses to drought preconditioning were studied by subjecting 5-month-old seedlings of three provenances of Eucalyptus globulus to different water regimes for 36 days in a greenhouse pot study. Moderately stressed plants were watered every 6 days and severely stressed plants were watered every 9 days. Control plants were watered daily. Drought cycles induced significant changes in morphological and physiological characteristics. Preconditioned seedlings were smaller in size, root collar diameter, height, and leaf area than control seedlings. Shoot/root ratio was not affected by drought. Osmotic potential at full turgor (ψπFT) and osmotic potential at turgor loss point (ψπTLP) were significantly lower and the magnitude of osmotic adjustment was significantly higher under the severe than under the moderate stress treatment. In severely stressed plants a decrease of turgid mass/dry mass contributed to osmotic adjustment. In a subsequent acclimation test, preconditioned seedlings showed higher values of stomatal conductance, predawn relative water content and water potential and lower mortality than control plants. These variables were significantly related to ψπFT. We assume that the reduced leaf area and osmotic adjustment observed in preconditioned seedlings contributed to drought acclimation in the selected E. globulus provenances leading to better rates of gas exchange and improved water status than non-conditioned plants. Provenances exhibited differences in their responses to drought, albeit mainly morphological differences. E. globulus subsp. bicostata from Tumbarumba grew more quickly (larger diameter and height relative growth rate) than the other provenances, implying a greater ability to tolerate water stress. It can be expected that preconditioned seedlings will display greater tolerance of water stress than non-conditioned plants and perform better during early establishment (higher survival and early growth).  相似文献   

16.
Soil water deficit is a major limitation to agricultural productivity in arid regions. Leaf photosynthesis can quickly recover after rewatering and remains at a higher level for a longer period, thus increasing crop yield and water-use efficiency (WUE). We tested our hypothesis that leaf photosynthesis and root activity of water-stressed cotton (Gossypium hirsutum L.) plants could quickly recover after rewatering at a certain growth stage and it should not influence a cotton yield but increase WUE. Treatments in this study included two degrees of water stress: mild water stress (V1) and moderate water stress (V2) imposed at one of four cotton growth stages [i.e., S1 (from the full budding to early flowering stage), S2 (from early flowering to full flowering), S3 (from full flowering to full bolling), and S4 (from full bolling to boll-opening)]. The soil water content before and after the water stress was the same as that in the control treatment (CK, 70–75% of field capacity). Water deficit significantly reduced the leaf water potential, net photosynthetic rate, and stomatal conductance in cotton. The extent of the decline was greater in S2V2 treatment compared to others. Water deficit also reduced root activity, but the extent of inhibition varied in dependence on soil depth and duration. When plants were subjected to S1V1, the root activity in the 20–100 cm depth recovered rapidly and even exceeded CK one day after rewatering. An overcompensation response was observed for both photosynthesis and aboveground dry mass within one to three days after rewatering. Compared with the CK, S1V1 showed no significant effect on the yield but it increased total WUE and irrigation WUE. These results suggest that even a short-term water stress during the S1, S2 and S4 stages mitigated, with respect to the root activity, the negative effect of drought and enhanced leaf photosynthesis compensatory effects of rewatering in order to increase cotton WUE with drip irrigation under mulch in arid areas.  相似文献   

17.
Bean plantlets ( Phaseolus vulgaris L. cv. Topcrop) were stressed at the age of 16–18 days by gradual (2–8%) or abrupt addition of 6% (w/v) polyethylene glycol Mw 6000 (PEG 6000) to Hoagland solution. Leaf conductance, photosynthesis, internal CO2 partial pressure (Ci), relative water content (RWC), water content/dry weight (H2O/DW), apoplastic PEG concentrations and weight of leaves, stems and roots were determined. Leaf conductance, photosynthesis and Ci were determined on non-detached primary leaves, and leaf potentials (water, osmotic and turgor potentials) were investigated in freshly detached (non-rehydrated) primary leaves, both in treated and control plants; RWC and osmotic potential were also assessed at the null turgor point. Low PEG 6000 concentrations induced early and evident decrease in leaf conductance and photosynthesis, whereas Ci decreased only moderately and tended to recover during advanced stress. There were moderate though significant decreases in RWC and H2O/DW, no change or increases in water potential, no significant changes in osmotic potential and a moderate but significant increase in turgor potential. Even when referred to null turgor point, RWC significantly decreased and osmotic potential was unchanged. It was concluded that apoplastic PEG 6000 accumulation at evaporating sites would account for the early decrease in conductance which would also justify the unchanged or the prevalent increase in water potential and turgor potential. The subsequent PEG diffusion and concentration in the leaf apoplastic water would have induced the RWC and H2O/DW decrease and the final turgor flexion documented.  相似文献   

18.
Baslam M  Goicoechea N 《Mycorrhiza》2012,22(5):347-359
Lettuce, a major food crop within the European Union and the most used for the so-called 'Fourth Range' of vegetables, can associate with arbuscular mycorrhizal fungi (AMF). Mycorrhizal symbiosis can stimulate the synthesis of secondary metabolites, which may increase plant tolerance to stresses and enhance the accumulation of antioxidant compounds potentially beneficial to human health. Our objectives were to assess (1) if the application of a commercial formulation of AMF benefited growth of lettuce under different types and degrees of water deficits; (2) if water restrictions affected the nutritional quality of lettuce; and (3) if AMF improved the quality of lettuce when plants grew under reduced irrigation. Two cultivars of lettuce consumed as salads, Batavia Rubia Munguía and Maravilla de Verano, were used in the study. Four different water regimes were applied to both non-mycorrhizal and mycorrhizal plants: optimal irrigation (field capacity [FC]), a water regime equivalent to 2/3 of FC, a water regime equivalent to 1/2 of FC and a cyclic drought (CD). Results showed that mycorrhizal symbiosis improved the accumulation of antioxidant compounds, mainly carotenoids and anthocyanins, and to a lesser extent chlorophylls and phenolics, in leaves of lettuce. These enhancements were higher under water deficit than under optimal irrigation. Moreover, shoot biomass in mycorrhizal lettuces subjected to 2/3 of FC were similar to those of non-mycorrhizal plants cultivated under well-watered conditions. In addition, lettuces subjected to 2/3 FC had similar leaf RWC than their respective well-watered controls, regardless of mycorrhizal inoculation. Therefore, results suggest that mycorrhizal symbiosis can improve quality of lettuce and may allow restrict irrigation without reducing production.  相似文献   

19.
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk of ABA with H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in this study. ABA treatment under drought stress reduced hydrogen peroxide (H2O2) content and the degree of leaf rolling (%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling degree (%), H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expressions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound cross-talking H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjustment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield by means of moderately rolled leaves.  相似文献   

20.
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号