首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Pressure chamber (PC) and thermocouple pyschrometer (TP) were used to determine leaf water potential in tomato ( Lycopersicon esculentum Mill.), eggplant ( Solanum melongena L.) and bean ( Phaseolus vulgaris L.) seedlings subjected to normal watering regime, drought or chilling temperature. The PC readings were corrected for apoplastic osmotic potential. Similar results were obtained in all species. In unchilled plants, the PC and TP measurements corresponded within a potential range of -0.1 to -2.5MPa, but discrepancies between the two methods often occurred in chilled plants, with PC water potentials 0.2 to 1.4 MPa higher (less negative) than TP values. The PC measurements appeared spuriously high in chilled plants. In droughted plants leaf dehydration occurred in both the blade and the petiole, whereas in chilled plants, water deficit was generally observed only in the blade.  相似文献   

2.
Bean plantlets ( Phaseolus vulgaris L. cv. Topcrop) were stressed at the age of 16–18 days by gradual (2–8%) or abrupt addition of 6% (w/v) polyethylene glycol Mw 6000 (PEG 6000) to Hoagland solution. Leaf conductance, photosynthesis, internal CO2 partial pressure (Ci), relative water content (RWC), water content/dry weight (H2O/DW), apoplastic PEG concentrations and weight of leaves, stems and roots were determined. Leaf conductance, photosynthesis and Ci were determined on non-detached primary leaves, and leaf potentials (water, osmotic and turgor potentials) were investigated in freshly detached (non-rehydrated) primary leaves, both in treated and control plants; RWC and osmotic potential were also assessed at the null turgor point. Low PEG 6000 concentrations induced early and evident decrease in leaf conductance and photosynthesis, whereas Ci decreased only moderately and tended to recover during advanced stress. There were moderate though significant decreases in RWC and H2O/DW, no change or increases in water potential, no significant changes in osmotic potential and a moderate but significant increase in turgor potential. Even when referred to null turgor point, RWC significantly decreased and osmotic potential was unchanged. It was concluded that apoplastic PEG 6000 accumulation at evaporating sites would account for the early decrease in conductance which would also justify the unchanged or the prevalent increase in water potential and turgor potential. The subsequent PEG diffusion and concentration in the leaf apoplastic water would have induced the RWC and H2O/DW decrease and the final turgor flexion documented.  相似文献   

3.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

4.
Duhme  F.  Hinckley  T. M. 《Plant Ecology》1992,99(1):185-198
Based upon two different research studies in the mediterranean regions of France and Turkey, drought resistance strategies were investigated in a broad group of species. The diurnal and seasonal patterns of the water relations of different lifeforms from the thermo-mediterranean to submediterranean lifezones were compared. Three sites near Montpellier, in Southern France, and five sites near Antalya, Turkey were used for this comparison. Xylem pressure potential and relative stomatal aperture were the key water relations parameters collected in France while these parameters as well as osmotic potential and leaf conductance were studied in Turkey.From the 26 different study species investigated in France, 7 distinct types of stomatal control were observed, with the deciduous lifeforms showing the least control, the sclerophyllous and coniferous evergreens the greatest control and the malacophyllous shrublets intermediate levels of control. Predawn water potential values provided a means of classifying species according to their temporal and spatial utilization of site water reserves. The comparison of turgor potentials (difference between water and osmotic potentials) gave an insight into leaf adaptations to site moisture. Species with high predawn water potentials generally maintain positive turgor even at midday during the summer, whereas species with low predawn values were frequently at zero turgor even at predawn. Phlomis grandiflora was the most extreme species with mid-summer predawns and midday water potentials of –6 MPa and osmotic potentials never more negative than –2.4 MPa.  相似文献   

5.
Mycorrhizal symbiosis can modify plant response to drying soil, but little is known about the relative contribution of soil vs. root hyphal colonization to drought resistance of mycorrhizal plants. Foliar dehydration tolerance, characterized as leaf and soil water potential at the end of a lethal drying episode, was measured in bean plants (Phaseolus vulgaris) colonized by Glomus intraradices or by a mix of arbuscular mycorrhizal fungi collected from a semi-arid grassland. Path analysis modeling was used to evaluate how colonization rates and other variables affected these lethal values. Of several plant and soil characteristics tested, variation in dehydration tolerance was best explained by soil hyphal density. Soil hyphal colonization had larger direct and total effects on both lethal leaf water potential and soil water potential than did root hyphal colonization, root density, soil aggregation, soil glomalin concentration, leaf phosphorus concentration or leaf osmotic potential. Plants colonized by the semi-arid mix of mycorrhizal fungi had lower lethal leaf water potential and soil water potential than plants colonized by G. intraradices. Our findings support the assertion that external, soil hyphae may play an important role in mycorrhizal influence on the water relations of host plants.  相似文献   

6.
The interdependence between changes in growth and water relations after waterlogging was investigated by recording simultaneously growth, transpiration, water potential, turgor, leaf diffusion resistance and abscisic acid content in Phaseolus vulgaris L. cv. bruine Noord-Hollandse. Growth was inhibited immediately after flooding, whereas transpiration decreased gradually to a low level in about three days. The first two days after flooding a small increase in abscisic acid content in the leaves was observed which was accompanied by an increase in diffusion resistance. The increase in abscisic acid content could result from an inhibited export from the leaves. After the first two days a decrease in water potential and turgor was accompanied by a drastic increase in both abscisic acid content and diffusion resistance. This large increase in abscisic acid content occurred before the turgor had reached its minimum value. The change in diffusion resistance kept showing a lag of about one day with the change in abscisic acid content. The possibility is discussed that besides abscisic acid also its metabolite phaseic acid is involved in stomatal closure. After the formation of adventitious roots on the hypocotyl, abscisic acid level, diffusion resistance, water potential and turgor returned to the control values. Transpiration showed a slow recovery from the sixth day after flooding, whereas growth was inhibited for at least nine days. A remarkable similarity exists between our observations on the responses of bean plants to flooding and the well known responses to drought.  相似文献   

7.
Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Relatively little ecophysiological research has been conducted to determine the responses to drought of Phaseolus vulgaris. Four bean cultivars (cvs.) from Brazil, A320, Carioca, Ouro Negro and Xodó were submitted to an imposed water deficit in order to evaluate the importance of some adaptive mechanisms of drought resistance through the analysis of growth parameters, water status, gas exchange and indicators of tolerance mechanisms at the cellular level. During the drought treatment, relative growth rates were more reduced for A320 and Xodó than Carioca and Ouro Negro. A320 closed its stomata very rapidly and complete stomatal closure was obtained at Psi(w)=-0.6 MPa, in contrast to the other cvs. where stomata were fully closed only at Psi(w)=-0.9 MPa. Net assimilation rates were closely related to stomatal conductances. Mechanisms at the cellular level appeared to be mostly important for higher tolerance. Carioca and Ouro Negro, when compared to A320 and Xodó, were characterized by having better drought tolerance mechanisms and higher tissue water retention capacity leading to a better growth under water deficits. The leaf dehydration rates of those cvs. were slow whereas those of the drought sensitive cvs. were rapid. The results were confirmed by the electrolyte leakage test and leaf osmotic potential measurements, which indicated higher membrane resistance and osmotic adjustment in the two tolerant cvs. Carioca and Ouro Negro. It appears from this study that despite being cultivated in the same geographical region, the four cvs. of P. vulgaris displayed somewhat different drought adaptive capacities for prolonged drought during the vegetative phase.  相似文献   

9.
Detrimental effect of rust infection on the water relations of bean   总被引:3,自引:0,他引:3       下载免费PDF全文
Bean plants (Phaseolus vulgaris L.) infected with the rust Uromyces phaseoli became unusually susceptible to drought as sporulation occurred. Under the conditions used (1,300 ft-c, 27 C, and 55% relative humidity) such plants wilted at soil water potentials greater than −1 bar, whereas healthy plants did not wilt until the soil water potential fell below −3.4 bars. Determinations of leaf water and osmotic potentials showed that an alteration in leaf osmotic potential was not responsible for the wilting of diseased plants. When diffusive resistance was measured as a function of decreasing leaf water content, the resistance of healthy leaves increased to 50 sec cm−1 by the time relative water content decreased to 70%, whereas the resistance of diseased leaves remained less than 8 sec cm−1 down to 50% relative water content. Apparently, water vapor loss through cuticle damaged by the sporulation process, together with the reduction in root to shoot ratio which occurs in diseased plants, upset the water economy of the diseased plant under mild drought conditions.  相似文献   

10.
Abstract This study reports on the effect of water deficit on the tissue water relations and leaf growth of six corn cultivars, growing in glasshouse conditions, in order to understand growth responses to drought of tropical corn. A mild water-stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about –1.5 MPa by day 12 after watering was withheld. Analysis of the water relation characteristics of growing leaves using the pressure–volume technique demonstrated that under water deficits all the cultivars changed their moisture-release curves compared with irrigated plants. Osmotic potential at full turgor was lowered in water-stressed plants of all the genotypes and the degree of such change was between 0.34 MPa and 0.58 MPa. Thus, turgor pressure was lost at a lower water potential in water-stressed plants than in irrigated plants of all the varieties. Volumetric elastic moduli were also increased under water deficits and the increase ranged between 10% and 141% among the cultivars. In all the genotypes, the stress imposed led to a reduction of leaf area and dry matter accumulation. Leaf expansion was very sensitive to low turgor pressure and it ceased when turgor reached 0.2 MPa. Thus, varieties able to maintain a higher degree of turgor pressure (i.e. by osmotic adjustment) under water deficits may be able to prolong leaf growth.  相似文献   

11.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

12.
Goicoechea  N.  Antolín  M.C.  Sánchez-Díaz  M. 《Plant and Soil》1997,192(2):261-268
The objective of this research was to study the effect of drought on nutrient content and leaf water status in alfalfa (Medicago sativa L. cv Aragón) plants inoculated with a mycorrhizal fungus and/or Rhizobium compared with noninoculated ones. The four treatments were: a) plants inoculated with Glomus fasciculatum and Rhizobium meliloti 102 F51 strain, (MR); b) plants inoculated with R. meliloti only (R); c) plants with G. fasciculatum only (M); and d) noninoculated plants (N). Nonmycorrhizal plants were supplemented with phosphorus and nonnodulated ones with nitrogen to achieve similar size and nutrient content in all treatments. Plants were drought stressed using two cycles of moisture stress and recovery. The components of total leaf water potential (osmotic and pressure potentials at full turgor), percentage of apoplastic water volume and the bulk modulus of elasticity of leaf tissue were determined. Macronutrient (N, P, K, Ca, S and Mg) and micronutrient (Co, Mo, Zn, Mn, Cu, Na, Fe and B) content per plant were also measured. Leaves of N and R plants had decreased osmotic potentials and increased pressure potentials at full turgor, with no changes either in the bulk modulus of elasticity or the percentage of apoplastic water upon drought conditions. By contrast, M and MR leaves did not vary in osmotic and turgor potentials under drought stress but had increased apoplastic water volume and cell elasticity (lowering bulk modulus). Drought stress decreased nutrient content of leaves and roots of noninoculated plants. R plants showed a decrease in nutrient content of leaves but maintained some micronutrients in roots. Leaves of M plants were similar in content of nutrients to N plants. However, roots of M and MR plants had significantly lower nutrient content. Results indicate an enhancement of nutrient content in mycorrhizal alfalfa plants during drought that affected leaf water relations during drought stress.  相似文献   

13.
The effect of water deficits on the water relations and stomatal responses of Helianthus annuus and Helianthus petiolaris were compared in plants growing in the glasshouse under controlled conditions. Unirrigated plants of both genotypes were subjected to two different stress rates in which predawn leaf water potentials declined steadily at either 0.15 MPa day?1 or 0.50 MPa day?1. In both genotypes water stress induced a gradual and similar decrease in leaf conductance from 1.6 to 0.3 cm s?1 as water potential decreased from-0.5 to-2.0 MPa. The relationship between leaf conductance and leaf water potential was not affected by the rate of stress development. Development of predawn leaf water potentials of-1.3 MPa had no significant effect on the relative water content at zero turgor, the apoplastic water content or the volumetric elastic modulus of whole leaves in either species, but decreased the osmotic potential at full turgor and zero turgor by 0.22 MPa and decreased the turgid weight: dry weight ratio from 10.6 to 8.4 in H. annuus, but not in H. petiolaris. In H. annuus leaves expanded during stress development, changes in the osmotic potential at full turgor induced by water deficits did not disappear on rewatering.  相似文献   

14.
Abstract. Leaf expansion of four sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was monitored continuously in a growth cabinet through the final stages of a drying cycle and then throughout the first 2 days after rewatering in order to study the responses of leaf expansion to water deficits. Comparable plants were also measured throughout a diurnal cycle in a glasshouse.
In the cabinet, leaf extension was faster in the dark than in the light, but an extended dark period suppressed leaf extension. At similar leaf water potentials, the rate of leaf extension was greater in the light than in the dark, but as the osmotic potential was lower in the light than in the dark, the relationship between turgor pressure and leaf extension rate was similar in both environments. Throughout the drying and recovery cycles turgor and leaf extension rate was positively correlated: no significant differences among cultivars were observed.
In the plants grown and measured in the glasshouse, leaf expansion occurred at lower leaf water potentials in stressed than in unstressed plants, but the relationship between leaf expansion and turgor was similar in both stressed and unstressed plants as a result of a lowering of the osmotic potential in the former. Diurnal turgor maintenance resulting from osmotic adjustment was almost half that occurring during a complete drying cycle. During the day, the leaf expansion rate increased linearly with turgor pressure in all cultivars: the expansion rate per unit turgor pressure was greater in the glasshouse than in the growth cabinet. Nocturnal leaf expansion in the stressed and unstressed plants was not, however, correlated with turgor pressure.  相似文献   

15.
Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above ?2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to ?5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.  相似文献   

16.
Osmotic adjustment in leaves of sorghum in response to water deficits   总被引:17,自引:12,他引:17       下载免费PDF全文
Jones MM 《Plant physiology》1978,61(1):122-126
The relationships among the total water potential, osmotic potential, turgor potential, and relative water content were determined for leaves of sorghum (Sorghum bicolor [L.] Moench cvs. `RS 610' and `Shallu') with three different histories of water stress. Plants were adequately watered (control), or the soil was allowed to dry slowly until the predawn leaf water potential reached either −0.4 megapascal (MPa) (treatment A) or −1.6 MPa (treatment B). Severe soil and plant water deficits developed sooner after cessation of watering in `Shallu' than in `RS 610', but no significant differences in osmotic adjustment or tissue water relations were observed between the two cultivars. In both cultivars, the stress treatments altered the relationship between leaf water potential and relative water content, resulting in the previously stressed plants maintaining higher tissue water contents than control plants at the same leaf water potential. The osmotic potential at full turgor in the control sorghum was −0.7 MPa: stress pretreatment significantly lowered the osmotic potential to −1.1 and −1.6 MPa in stress treatments A and B, respectively. As a result of this osmotic adjustment, leaf turgor potentials at a given value of leaf water potential exceeded those of the control plants by 0.15 to 0.30 MPa in treatment A and by 0.5 to 0.65 MPa in treatment B. However, zero turgor potential occurred at approximately the same value of relative water content (94%) irrespective of previous stress history. From the relationship between turgor potential and relative water content there was an approximate doubling of the volumetric elastic modulus, i.e. a halving of tissue elasticity, as a result of stress preconditioning. The influence of stress preconditioning on the moisture release curve is discussed.  相似文献   

17.
Control of Paraheliotropism in Two Phaseolus Species   总被引:1,自引:0,他引:1       下载免费PDF全文
Yu F  Berg VS 《Plant physiology》1994,106(4):1567-1573
Paraheliotropic (light-avoiding) leaf movements have been associated with high light intensity, high temperature, and drought. We investigated leaf elevation for intact plants, pulvinus bending for excised motor organs, and size change for protoplasts from motor tissue for two Phaseolus species: Phaseolus acutifolius A. Gray, native to hot, arid regions, and Phaseolus vulgaris L., the common bean. Leaf angles above horizontal were measured for central trifoliolate leaflets of intact plants at 24, 27, and 30[deg]C at 500 and 750 [mu]mol photons (400-700 nm) m-2 s-1 over a range of water potentials; equivalent angles were determined for excised motor organs under similar conditions. Diameters were measured for protoplasts from abaxial and adaxial motor tissue over a range of photon flux density values, temperatures, and water potentials. In general, higher photon flux density and temperature resulted in elevation of leaves, bending of excised pulvini, and equivalent changes in protoplast volume (swelling of abaxial protoplasts and shrinking of adaxial protoplasts). In intact plants, lower water potentials yielded greater paraheliotropism; abaxial protoplasts increased in size, whereas adaxial ones did not change. P. acutifolius typically exhibited greater paraheliotropism than did P. vulgaris under the same conditions, a set of physiological responses likely to be highly adaptive in its native arid habitat.  相似文献   

18.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

19.
Genotypes of mustard (B. juncea) were evaluated for concurrent changes in leaf water potential (Ψ), leaf osmotic potential (π), leaf turgor potential (P) and leaf relative water content (RWC) during moisture stress at reproductive stage of growth. The slope ‘b’ in the regression between Ψ and π varied from 0.43 to 0.97 and was positively correlated with P and RWC. The genotypes with ‘b’ around 0.7 were able to maintain P of about 0.5 MPa at Ψ of − 2.5 MPa and thus such value of ‘b’ seems to provide enough degree of tolerance against drought.  相似文献   

20.
Summary We compared the tissue water relations among resprouts and seedlings of three chaparral species during the first summer drought after wildfire. Two of the species, Rhus laurina and Ceanothus spinosus recover after fire by a combination of resprouting and seedling establishment (facultative resprouters), whereas a third species, Ceanothus megacarpus recovers by seedling establishment alone (obligate seeder). Our objectives were to document any differences in tissue water characteristics that might arise between resprouts and seedlings and to test the hypothesis that seedlings of obligate seeders develop more drought tolerant characteristics of their tissues than seedlings of facultative resprouters. We found that resprouts had much higher predawn values of water potential, osmotic potential, and turgor potentials than seedlings. Predawn turgor potentials of resprouts were 1.5 MPa through July and August when turgor potentials for seedlings remained near 0 MPa. During summer months, midday water potentials were 2 to 3 MPa higher for resprouts than seedlings and midday conductances of resprouts were two to five fold greater than those of seedlings. Even though resprouts did not experience severe water stress like seedlings, their tissue water characteristics, as determined by pressure-volume curve analyses, were similar by the peak of the drought in August. Further-more, the tissue water characteristics of seedlings from the obligate seeder, C. megacarpus, were similar to those of facultative resprouters — R. laurina, and C. spinosus. We attribute the observed differences in plant water status between resprouts and seedlings to differences in rooting depths and access to soil moisture reserves during summer drought. We conclude that the higher growth rates, photosynthetic performance, and survivorship of postfire resprouts are primarily a result of higher water availability to resprouting tissues during summer months. It appears that the greater seedling survivorship during summer drought observed for the obligate seeder, C. megacarpus, is not associated with more favorable tissue water characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号