首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More information is needed on the physiological role of the tachykinins (TKs), especially neurokinin3-receptor (NK3) agonists, in the pancreas. In this paper we investigated and compared the effect of PG-KII (10(-9) to 10(-6) M), a natural NK3-receptor agonist, with that of the known secretagogues substance P (10(-9) to 10(-6)M), caerulein (10(-11) to 10(-8) M) and carbachol (10(-8) to 10(-5) M), on amylase secretion from dispersed pancreatic acini of the guinea pig and rat. PG-KII (10(-7) M) significantly increased basal amylase release from guinea pig pancreatic acini (from 5.4+/-0.9% to 11.3+/-0.5%, P < 0.05) but left basal release in the rat unchanged (6.5+/-0.5%). The stimulant effect of PG-KII on guinea pig acini was significantly reduced by the NK3-receptor antagonist, SR 142801 (5 x 10(-7) M), and left unchanged by the NK1-receptor antagonist, SR 140333 (5 x 10(-7) M). Conversely, substance P (10(-7) M) significantly stimulated amylase secretion from rat and guinea pig acini (12.6+/-0.6% and 12.1+/-0.7%, P < 0.05). This stimulated effect of substance P was antagonized by the NK1--receptor antagonist (5 x 10(-7) M), but not by the NK3-receptor antagonist (5 x 10(-7) M). The PG-KII- and substance P-evoked maximal responses were lower than those evoked by caerulein (10(-9) M) (guinea pig, 19.1+/-1.3%; rat, 1802+/-0.9%, P < 0.01) and carbachol (10(-5) M) (guinea pig, 23.3+/-1.2%; rat, 24.0+/-1.1%, P < 0.01). The inhibitors of phospholipase C U-73122 (10(-5) M), phospholipase A2 quinacrine (10(-5)M), and protein tyrosine kinase genistein (10(-4) M), partly but significantly inhibited PG-KII, as well as carbachol-stimulated amylase release. Coincubation of PG-KII 10(-7) M with submaximal doses of caerulein (10(-11) to 10(-10) M) and carbachol (10(-7) to 10(-6) M) had an additive effect on amylase release. Pre-incubation with PG-KII (10(-7) M) for 30 min significantly reduced the subsequent amylase response to PG-KII, whereas pre-incubation with caerulein 10(-10) M or carbachol 10(-6) M did not. These findings suggest that PG-KII directly contributes to pancreatic exocrine secretion by interacting with acinar NK3 receptors of the guinea pig but not of the rat. PG-KII signal transduction involves the intracellular phospholipase C, phospholipase A2 and protein tyrosine kinase pathways. The NK3 receptor system cooperates with the other known secretagogues in regulating guinea pig exocrine pancreatic secretion and undergoes rapid homologous desensitization.  相似文献   

2.
Galanin, a 29 amino acid neuropeptide, was recently isolated from pig intestine. We studied the localization, nature and effect of galanin in pig pancreas. Galanin immunoreactive nerve fibers were regularly found in the pancreas. A peptide chromatographically similar to synthetic galanin was identified in pancreas extracts. The effect of galanin on the endocrine and exocrine secretion was studied in isolated pancreases, perfused with a synthetic medium containing 3.5, 5 or 8 mmol/l glucose and synthetic galanin (10(-10)-10(-8) mol/l). There was no effect on the basal exocrine secretion. The output of insulin, glucagon, somatostatin and pancreatic polypeptide (PP) was measured in the effluent. There was no effect on PP secretion. At a perfusate glucose concentration of 5 mmol/l, galanin at 10(-9) mol/l increased insulin secretion by 55 +/- 14% (mean +/- S.E.M., n = 5) of basal secretion, and at 10(-8) mol/l by 58 +/- 27% (n = 6). At 8 mmol/l glucose, insulin secretion increased by 25 +/- 10% (n = 6) and 62 +/- 17% (n = 8). At 5 mmol/l glucose glucagon secretion was increased by 15 +/- 3% (n = 5) by galanin at 10(-9) mol/l and by 29 +/- 11% (n = 5) by galanin at 10(-8) mol/l, and at 8 mmol/l glucose by 66 +/- 27% and 41 +/- 25%. Somatostatin secretion was inhibited to 72 +/- 2% (n = 5) of basal secretion by galanin at 10(-9) mol/l and to 65 +/- 7% (n = 7) at galanin at 10(-8) mol/l, both at 5 mmol/l glucose. At 8 mmol/l the figures were 83 +/- 6% and 70 +/- 10%. Insulin secretion in response to square wave increases in glucose concentration from 3.5 to 11 mmol/l (n = 5) increased 2-fold during simultaneous perfusion with galanin (10(-8) mol/l).  相似文献   

3.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

4.
The tachykinins, including substance P, neurokinin A and neurokinin B, are a mammalian peptide family that have documented motor, sensory and circulatory neurotransmitter functions in the gut. Little is known about their action on the exocrine pancreas. In this study we investigated the effects of PG-KII, a natural NK3-tachykinin receptor agonist, and senktide, a synthetic NK3-tachykinin receptor agonist, on amylase release from isolated pancreatic lobules of the guinea pig in comparison with the secretagogues carbachol, caerulein and substance P and the depolarizing agent KCl. When added to incubation flasks at various concentrations (from 10(-10) to 10(-6)M), PG-KII and senktide both caused a dose-dependent increase in amylase release from pancreatic lobules. PG-KII and senktide elicited a lower maximal response (7.5+/-0.8 and 8.1+/-0.6% of the total lobular amylase content) than carbachol (34.4+/-3.9%), caerulein (26.5+/-2.8%) and KCl (22.5+/-3.8%). Whereas atropine left PG-KII and senktide-stimulated secretion unaffected, the non peptide NK3 receptor antagonist SR 142801 significantly reduced the stimulant effect of PG-KII and senktide. PG-KII (10(-7)M) also slightly though significantly increased the response to lower concentrations of caerulein (10(-11) and 10(-10)M) and carbachol (10(-7) and 10(-6)M). These findings show that PG-KII and senktide are weak stimulants of exocrine pancreatic secretion that act directly on the acinar cells through NK3 receptors, without cholinergic involvement. We suggest also that the tachykininergic NK3 receptor system cooperates with the other known secretagogues in the control of pancreatic exocrine secretion.  相似文献   

5.
The effect of estradiol (E2) on amylase content and on basal and stimulated amylase release from the pancreatic acini was examined in relation to its effects on cholecystokinin (CCK)-receptor (R) levels. Guinea pigs were ovariectomized (OVX) and a week later administered either E2 (10 micrograms/kg) (Treated, T) or vehicle (corn oil) (Control, C) 0.2 ml/day s.c. After 7 days of injections, animals were killed, pancreata weighed and basal and stimulated amylase release from pancreatic acini measured. Receptors for CCK were measured on pancreatic membranes. Chronic administration of E2 resulted in a significant decrease in: (1) pancreatic weight (0.96 +/- 0.04, T vs 1.142 +/- 0.046 g, C); (2) total pancreatic DNA content (5.74 +/- 0.37, T vs 6.81 +/- 0.16 mgs, C); (3) total amylase content in pancreata (2081 +/- 307, T vs 3795 +/- 442 I.U., C); (4) absolute value of basal amylase release (6.57 +/- 1.4, T vs 11.8 +/- 1.9 I.U./incubate, C); and (5) absolute value of amylase release stimulated by increasing doses (0.01-1000 nM) of CCK in T vs C animals. On the other hand, the amylase release in response to greater than 0.5 nM of CCK, expressed as a percentage of the total amylase content, was significantly increased in T vs C animals, which may be related to a significant rise in the concentration (fmol/mg protein) of CCK-receptors (629.8 +/- 65.9, T vs 313.4 +/- 92.7 fmol, C). Concentration of DNA/unit pancreatic weight and basal amylase release expressed as a percentage of total content, however, was similar in the C and T guinea pigs, while concentration of amylase and CCK-receptors/unit pancreatic weight remained significantly different in the two groups of animals. These results suggest that E2 may have more than one effect on the pancreas in vivo, including a significant reduction in pancreatic growth and amylase concentration/cell and an up-regulation of CCK-receptors/cell.  相似文献   

6.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

7.
By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum and were found to co-exist in most of these structures. Using isolated, perfused porcine ileum we studied the release of galanin and VIP in response to electrical stimulation of the mixed periarterial nerves or to intraarterial infusions of different neuroactive agents. Nerve stimulation (4-10 Hz) inhibited the basal release of galanin and VIP from the ileum (to 69 +/- 6 and 62 +/- 6% of basal release). After infusion of the alpha-adrenergic blocker, phentolamine, (10(-6) M) electrical stimulation increased the release of both galanin and VIP (to 140 +/- 12 and 133 +/- 13% of basal output). This increase was abolished by atropine (10(-6) M) and by hexamethonium (3.10(-5) M). Infusion of norepinephrine (10(-6) M) inhibited, whereas acetylcholine (10(-6) M) stimulated the release of both peptides. The effect of the latter was abolished by atropine. The inhibitory effect of nerve stimulation was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron.  相似文献   

8.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

9.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

10.
Muscarinic stimulation of submucosal glands in swine trachea   总被引:1,自引:0,他引:1  
The properties of muscarinic acetylcholine receptors (mAChR) on tracheal explants and isolated submucosal gland cells were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and N-[3H]methylscopolamine ([3H]NMS) as ligands. Analysis of competitive displacement of ([3H]NMS binding by pirenzepine demonstrated the presence of M1- (27 +/- 2%) and M2G- (73 +/- 2%) receptors on isolated tracheal submucosal gland cells (TSGC's) in control. Daily administration of diisopropylfluorophosphate (DFP) inhibited cholinesterase activity by greater than 95%. After 7 days of DFP treatment, [3H]QNB binding to intact TSGC's decreased from 14.2 +/- 0.6 to 6.3 +/- 0.8 fmol/10(6) cells; similarly, [3H]NMS binding fell from 8.1 +/- 1.9 to 2.0 +/- 0.8 fmol/10(6) cells. The loss of mAChR's was predominantly of the M2G subtype with the relative proportion dropping to 33%. In addition, 90% of the receptors assumed the high-affinity state for carbachol displacement of [3H]NMS. Mucus secretion was quantitated by measuring the release of 3H-labeled mucus macromolecules from explants of tracheal submucosal glands and isolated cells. Acetylcholine (ACh), 2 X 10(-5) M, stimulated mucus secretion by 2.5 and 2.3 times the basal rate, respectively. Elimination of acetylcholinesterase (AChe) by DFP increased the ACh sensitivity by 18- and 5-fold. Tracheal explants or TSGC's obtained 2 h after an in vivo DFP treatment showed a 6- and 3-fold ACh stimulation. This ACh sensitivity decreased during the continued daily dosing with DFP such that only a 1.3- and 1.1-fold ACh stimulation was apparent after 7 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Role of leptin in the control of postprandial pancreatic enzyme secretion.   总被引:3,自引:0,他引:3  
Leptin released by adipocytes has been implicated in the control of food intake but recent detection of specific leptin receptors in the pancreas suggests that this peptide may also play some role in the modulation of pancreatic function. This study was undertaken to examine the effect of exogenous leptin on pancreatic enzyme secretion in vitro using isolated pancreatic acini, or in vivo in conscious rats with chronic pancreatic fistulae. Leptin plasma level was measured by radioimmunoassay following leptin administration to the animals. Intraperitoneal (i.p.) administration of leptin (0.1, 1, 5, 10, 20 or 50 microg/kg), failed to affect significantly basal secretion of pancreatic protein, but markedly reduced that stimulated by feeding. The strongest inhibition has been observed at dose of 10 microg/kg of leptin. Under basal conditions plasma leptin level averaged about 0.15 +/- 0.04 ng/ml and was increased by feeding up to 1.8 +/- 0.4 ng/ml. Administration of leptin dose-dependently augmented this plasma leptin level, reaching about 0.65 +/- 0.04 ng/ml at dose of 10 microg/kg of leptin. This dose of leptin completely abolished increase of pancreatic protein output produced by ordinary feeding, sham feeding or by diversion of pancreatic juice to the exterior. Leptin (10(-10)-10(-7) M) also dose-dependently attenuated caerulein-induced amylase release from isolated pancreatic acini, whereas basal enzyme secretion was unaffected. We conclude that leptin could take a part in the inhibition of postprandial pancreatic secretion and this effect could be related, at least in part, to the direct action of this peptide on pancreatic acini.  相似文献   

12.
The distribution of adrenergic, cholinergic and amino acid neurotransmitters and/or their enzymes were examined in both the normal and diabetic pancreatic tissues in rat using immunohistochemistry to determine whether changes in the pattern of distribution of nerves containing these neurotransmitters will occur as a result of diabetes mellitus. In addition to this, the effect of noradrenaline (NA), adrenaline (ADR), acetylcholine (ACh) and gamma-amino butyric acid (GABA) on glucagon secretion from the isolated normal and diabetic pancreatic tissues was also investigated. Pancreatic fragments from the tail end of normal and diabetic rats were removed and incubated with different concentrations (10(-8)-10(-4) M) of these neurotransmitters. Glucagon secretion into the supernatant was later determined by radioimmunoassay. NA at 10(-6) M evoked a three-fold increase in glucagon secretion from normal pancreatic tissue fragments. In diabetic pancreatic tissue, NA at 10(-6) M was able to increase glucagon secretion 1.5 times the value obtained from diabetic basal. ADR (10(-8) M) increased glucagon secretion slightly but not significantly in normal pancreatic tissue. ADR inhibited glucagon secretion from diabetic pancreas at all concentrations. ACh (10(-8) M) induced a five-fold increase in glucagon secretion from normal pancreatic tissue. In a similar way, ACh evoked a two-fold increase in glucagon secretion from diabetic pancreas at 10(-4) M. In normal pancreatic tissue, GABA produced a slight but not significant increase in glucagon secretion at 10(-4) M. In contrast to this it inhibited glucagon secretion from diabetic pancreatic tissue fragments at all concentrations. In summary, tyrosine hydroxylase- and choline acetyltransferase-positive nerves are equally well distributed in both normal and diabetic rat pancreas. There was an increase in the number of glucagon positive cells and a decrease in the number of GABA-positive cells in diabetic pancreas. NA and ACh have a potent stimulatory effect on glucagon secretion from normal pancreatic tissue fragments, whereas ADR and GABA produced a small but not significant increase in glucagon secretion from normal pancreas. NA and GABA stimulated glucagon secretion from diabetic pancreas. In contrast, ADR and ACh inhibited glucagon secretion from diabetic pancreas. Neurotransmitters vary in their ability to provoke glucagon secretion from either normal or diabetic pancreas.  相似文献   

13.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

14.
Recent synthesis of specific, potent bombesin receptor antagonists allows examination of the role of bombesin-like peptides in physiological processes in vivo. We characterized effects of [D-Phe6]bombesin(6-13)-methyl-ester (BME) on pancreatic enzyme secretion stimulated by the C-terminal decapeptide of gastrin releasing peptide (GRP-10), food intake, and diversion of bile-pancreatic juice in rats. In isolated pancreatic acini, BME had no agonistic effects on amylase secretion but competitively inhibited responses to GRP-10, yielding a pA2 value of 8.89 +/- 0.19. In conscious rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas, basal enzyme secretion (bile-pancreatic juice recirculated) was not affected by the antagonist. Maximal amylase response to GRP-10 (0.5 nmol/kg/h) was inhibited dose dependently by BME, reaching 97% inhibition at a dose of 400 nmol/kg/h. The dose response curve of amylase secretion stimulated by GRP-10 was shifted to the right by 40 nmol/kg/h BME, but maximal amylase response was unaltered, suggesting competitive inhibition in vivo. Liquid food intake and bile-pancreatic juice diversion caused substantial increases in amylase secretion; neither response was altered during administration of 400 pmol/kg/h BME. These results demonstrate that BME is a potent, competitive antagonist of pancreatic responses to bombesin-like peptides in vitro and in vivo. Lack of effect of BME on basal pancreatic secretion or responses to liquid food intake or diversion of bile-pancreatic juice in rats suggests that endogenous bombesin-like peptides do not act either directly or indirectly to mediate these responses.  相似文献   

15.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

16.
The neuropeptide galanin has species-dependent effects on intestinal motility. It has a contractile effect on rat jejunal muscle while it relaxes guinea-pig ileum by inhibiting cholinergic transmission. Its effect on human gut motility has been unknown. Extensive work led to the discovery of selective galanin analogues such as M15 [galanin(1-12)-Pro-substance-P(5-11)], M35 [galanin(1-12)-Pro-bradykinin(2-9)-amide] that competitively inhibit various actions of galanin in the central nervous system. The present study was designed to examine the effect of galanin, M15 and M35 on longitudinal jejunal smooth muscle strips isolated from humans and rats, and to localize galanin-immunoreactivity in human jejunum. Galanin and ACh were equally effective in stimulating contractions of the isolated jejunal muscle: sigmoid curve fitting showed that maximal contractile response to galanin and ACh were 25.7+/-11.1 mN and 23.7+/-9.7 in humans, while 8.0+/-0.6 and 8.1+/-0.3 mN in rats, respectively. These effects of galanin were not inhibited by either atropine (5 x 10(-6) M) or tetrodotoxin (3 x 10(-6) M). The potency of galanin inducing the contractile actions were similar in humans and rats. Interestingly, neither M15 nor M35 (up to 10(-7) M) were able to inhibit the responses of the smooth muscle to galanin. However, both putative galanin receptor antagonists showed agonist effects in our experimental models. In accordance with the functional studies, both the longitudinal and the circular muscle layers were abundant in nerve fibers and varicosities showing galanin immunoreactivity. Our data suggest that galanin is a potent physiological regulator of jejunal contractions in humans. Its action on the jejunum, however, is mediated by galanin receptors that are different from those located in the central nervous system.  相似文献   

17.
The present experiments measured the release and the synthesis of acetylcholine (ACh) by cat sympathetic ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol) and/or picrylsulfonic acid (TNBS), two compounds known to have the ability to block the uptake of ACh by cholinergic synaptic vesicles in vitro. We confirmed that, in stimulated (5 Hz) perfused (30 min) ganglia, AH5183 depressed ACh release and ACh tissue content increased by 86 +/- 6% compared to contralateral ganglia used as controls. Preganglionic activity increased ACh release by a similar amount in the presence (19.9 +/- 1.0 pmol/min) or absence (20.5 +/- 2.4 pmol/min) of TNBS. The final tissue ACh content was also similar in the presence (1,668 +/- 166 pmol) or absence (1,680 +/- 56 pmol) of TNBS. However, the AH5183-induced increase of tissue ACh content (86 +/- 6%) was abolished completely when AH5183 was perfused with 1.5 mM TNBS (-3.0 +/- 1.0%). This inhibition of ACh synthesis, observed in TNBS-AH5183-perfused ganglia, was not dependent upon further inhibition of ACh release beyond that caused by AH5183 alone, because 14.0 +/- 1.9% of the transmitter store was released by preganglionic nerve stimulation in the presence of TNBS plus AH5183 and this was similar in the presence of AH5183 without TNBS (14.0 +/- 0.6%). Moreover, when ganglia were first treated with TNBS and then stimulated in the presence of AH5183, an increase of 64 +/- 6% of the ganglionic ACh content occurred, and this increase was not statistically different from the increase measured with AH5183 alone (86 +/- 6%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) has recently been isolated from porcine and rat brain and identified as the endogenous ligand of the N/OFQ receptor (NOP). It shows structural similarity with opioid peptides. N/OFQ has also been demonstrated in the gastrointestinal tract, where it inhibits gastrointestinal motility. The effect of N/OFQ on gastric neuroendocrine function is unknown as yet.In the isolated perfused rat stomach, N/OFQ 10(-6) M shows a small, but not significant decrease of basal somatostatin (SRIF) secretion. At the doses of 10(-12) M, 10(-10) and 10(-8) M N/OFQ has neither an effect on basal SRIF nor on basal vasoactive intestinal polypeptide (VIP), gastrin, substance P or bombesin secretion, respectively. However, gastric inhibitory polypeptide (GIP) 10(-9) M prestimulated SRIF secretion is significantly inhibited by N/OFQ 10(-8) M (-45+/-11%; p<0.05 vs. GIP). During concomitant infusion of the specific competitive NOP receptor antagonist [Nphe(1)]nociceptin(1-13)NH(2) 10(-6) M, the effect of N/OFQ is abolished (6+/-11%; p<0.05 vs. GIP and N/OFQ) while the opiate receptor antagonist naloxone 10(-6) M has no significant effect (-32+/-9%; ns vs. GIP and N/OFQ). At the higher concentration of N/OFQ 10(-6) M, the inhibition of prestimulated SRIF secretion (-58+/-6%; p<0.05 vs. GIP) is not influenced by the NOP receptor antagonist at the concentration of 10(-6) M (-49+/-9%; ns vs. GIP and N/OFQ) and 10(-5) M (-69+/-10%; ns vs. GIP and N/OFQ), respectively. On the other hand, infusion of naloxone 10(-6) M attenuates the inhibitory effect of N/OFQ 10(-6) M significantly (-21+/-6%; p<0.05 vs. GIP and N/OFQ).Thus, N/OFQ is an inhibitor of gastric somatostatin secretion. At the lower dose, this effect is transmitted via NOP receptors, while at the higher dose of 10(-6) M, the effect is at least in part mediated via opiate receptors.  相似文献   

19.
1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion   总被引:5,自引:0,他引:5  
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.  相似文献   

20.
The aims of this paper were to study: (1) the effects of TLQP-21 (non-acronic name), the C-terminal region of the VGF (non-acronic name), polypeptide (from residue 557 to 576 of VGF), on in vitro amylase release from rat isolated pancreatic lobules and acinar cells; (2) the mechanism through which TLQP-21 regulates exocrine pancreatic secretion, by using the muscarinic receptor antagonist atropine (10(-6)M) and the cyclo-oxygenase inhibitor, indomethacin (10(-6)M). On pancreatic lobules of rats, concentrations of TLQP-21 from 10(-7) to 10(-5)M significantly (p<0.05) induced a 2-3-fold increase of baseline pancreatic amylase release, measured at the end of 60 min incubation period. Co-incubation with atropine 10(-6)M did not antagonise the enzyme outflow induced by the peptide. On the contrary, co-incubation of TLQP-21 (10(-7) and 10(-6)M) with indomethacin, at concentration of 10(-6)M, which alone did not modify enzyme secretion, completely suppressed the increase of amylase evoked by TLQP-21 on pancreatic lobules. On rat pancreatic acinar cells, TLQP-21, at all the concentrations tested, was unable to affect exocrine pancreatic secretion, indicating an indirect mechanism of action on acinar cells. These results put in evidence, for the first time, that TLQP-21, a VGF-derived peptide, modulates exocrine pancreatic secretion in rats through a stimulatory mechanism involving prostaglandin release. In conclusion, TLQP-21 could be included among the neurohumoral signals regulating pancreatic exocrine secretion, and increases the knowledge concerning the systems controlling this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号