首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The biosynthesis of leukotrienes is known to occur through a series of complex processes which, in part, can be influenced by cell-cell interactions. Several studies have suggested that arachidonic acid availability is a major limiting step for leukotriene biosynthesis and that its transfer between cells can represent a significant source of this precursor. Accordingly, effect of time and source of arachidonic acid on transcellular leukotriene synthesis was studied in mixed platelet/neutrophil populations challenged with the calcium ionophore A23187. A time-dependent contribution of platelet-derived as well as neutrophil-derived arachidonate was found in the selective formation of neutrophil 5-lipoxygenase metabolites. Utilization of platelet or neutrophil arachidonate was followed by incorporation of radiolabeled arachidonic acid into platelet or neutrophil phospholipids prior to stimulation. Specific activity of liberated arachidonic acid along with numerous 5-lipoxygenase products (including LTB4, 20-hydroxy-LTB4, 5-HETE and LTC4) was determined in order to follow mass and radiolabel. A large amount of platelet-derived arachidonic acid was released in the first 1.5 min, whereas 10 min platelet-derived arachidonate was much lower in amount but significantly higher in specific activity, suggesting different precursor pools. The platelet-derived arachidonate was heavily utilized by the neutrophils at the early time points for formation of 5-HETE and delta 6-trans-LTB4 isomers, but appeared to contribute only marginally to the constitutive metabolism of neutrophil arachidonate into LTB4. Results from these experiments suggest different pools of 5-lipoxygenase in the neutrophil and indicate a time and source dependent modulation of arachidonate metabolism in mixed cell interactions.  相似文献   

2.
Caffeic acid is a selective inhibitor for leukotriene biosynthesis   总被引:16,自引:0,他引:16  
.eukotrienes are significantly involved in immunoregulation and in a variety of diseases, including asthma, inflammation and various allergic conditions. They are initially biosynthesized by 5-lipoxygenase from arachidonic acid, which can also be metabolized to prostaglandin endoperoxide by cyclooxygenase. The specific inhibitors for 5-lipoxygenase would be useful not only as tools for investigating the regulation mechanism of leukotriene biosynthesis, but also as drugs for clinical use. Although recently a few selective inhibitors have been reported, most of them are difficult to obtain, since they are new compounds. We found that caffeic acid, which is one of the most common reagents, is a selective inhibitor for 5-lipoxygenase and therefore for leukotriene biosynthesis. The inhibitory effect of its methyl ester on 5-lipoxygenase (ID50 = 4.8 X 10(-7) M) was stronger than that of caffeic acid itself (ID50 = 3.7 X 10(-6) M). Caffeic acid inhibited 5-lipoxygenase in a non-competitive manner. Caffeic acid and its methyl ester did not inhibit prostaglandin synthase activity at all, at least up to 5 X 10(-4) M, but rather stimulate at higher doses. The biosynthesis of leukotriene C4 and D4 in mouse mast tumor cells was also inhibited completely with 10(-4) caffeic acid. Besides, caffeic acid had little effect on arachidonic acid metabolism in platelet at less than 1 X 10(-5) M, but at higher doses it showed a definite inhibitory effect, i.e., thromboxane B2, HHT (12(S)-hydroxy-5,8,10-heptadecatetraenoic acid) and 12-HETE (12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid) syntheses were inhibited 33, 40 and 80% at 1 X 10(-4) M, respectively. Platelet aggregation induced by arachidonic acid was also inhibited by caffeic acid at high dose, while platelet aggregation induced by ADP is not influenced by caffeic acid at all. The observations on caffeic acid and its derivatives may contribute to leukotriene research.  相似文献   

3.
Inhibition of mammalian 5-lipoxygenase by aromatic disulfides   总被引:1,自引:0,他引:1  
As a primary step in leukotriene biosynthesis, arachidonic acid is converted into 5-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid by 5-lipoxygenase. This enzyme is studied in the supernatant fraction from sonified RBL-1 cells, a preparation that converts [1-14C]arachidonic acid to 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid and several 5,12-dihydroxyeicosatetraenoic acids including LTB4. In order to examine the reversibility of inhibitors, the supernatant fraction can be depleted of low molecular weight constituents by vacuum filtration. The 5-lipoxygenase is irreversibly inhibited by 500 microM N-ethyl-maleimide or 300 microM methyl methanethiolsulfonate, reagents that react covalently with protein sulfhydryl groups. In contrast, diphenyl disulfide reversibly inhibits this enzyme at 1-5 microM, irrespective of the GSH concentration in the supernatant. KCN also inhibits 5-lipoxygenase at 4 mM, suggesting the presence of a metal-containing prosthetic group. These observations imply that diphenyl disulfide and similar molecules with electron-releasing substituents on the aromatic rings could inhibit by binding to an electrophilic metallic center, the binding being stabilized by hydrophobic interactions between the enzyme and the aromatic groups on the flexible disulfide. Even though diphenyl disulfide does not inhibit soybean 15-lipoxygenase or endoperoxide synthase in cell-free systems, this compound does suppress prostaglandin as well as leukotriene synthesis in intact murine peritoneal macrophages and CXBG cells. Since lipoxygenases are susceptible to peroxide activation and peroxidase deactivation, changes in the redox state of the cell may alter arachidonic acid metabolism as effectively as actual enzyme inhibition.  相似文献   

4.
The effects of an inhalation anesthetic, halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the formation of 5-lipoxygenase metabolites such as leukotriene B4, 5(S)-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-isomers of leukotriene B4 and leukotriene C4 were studied in human leukocytes stimulated with calcium ionophore A23187. Halothane inhibited the formation of all these metabolites dose dependently and the formation was restored by removal of the drug. The anesthetic also reversibly inhibited the release of [3H]arachidonic acid from neutrophils with a half-inhibition concentration of less than 0.19 mM. The formation of 5-lipoxygenase metabolites was not inhibited by the anesthetic when leukocytes were stimulated with the ionophore in the presence of exogenous arachidonic acid. These observations indicate that the inhibitory effect of halothane on the formation of 5-lipoxygenase metabolites in leukocytes is mainly due to the inhibition of arachidonic acid release.  相似文献   

5.
The regulation of arachidonic acid conversion by the 5-lipoxygenase and the cyclooxygenase pathways in mouse peritoneal macrophages has been studied using particulate and soluble agonists. Particulate agonists, zymosan and latex, stimulated the production of cyclooxygenase metabolites as well as the 5-lipoxygenase product, leukotriene C4. In contrast, incubation with the soluble agonist phorbol myristate acetate or exogenous arachidonic acid led to the production of cyclooxygenase metabolites but not leukotriene C4. We tested the hypothesis that the 5-lipoxygenase, unlike the cyclooxygenase, requires activation by calcium before arachidonic acid can be utilized as a substrate. Addition of phorbol myristate acetate to macrophages in the presence of calcium ionophore (A23187) at a concentration which alone did not stimulate arachidonate metabolism resulted in a synergistic increase (50-fold) in leukotriene C4 synthesis compared to phorbol ester or A23187 alone. No such effect on the cyclooxygenase pathway metabolism was observed. Exogenous arachidonic acid in the presence of A23187 produced similar results yielding a 10-fold greater synthesis of leukotriene C4 over either substance alone without any effects on the cyclooxygenase metabolites. Presumably, calcium ionophore unmasked the synthesis of leukotriene C4 from phorbol myristate acetate-released and exogenous arachidonate by elevating intracellular calcium levels enough for 5-lipoxygenase activation. These data indicate that once arachidonic acid is released from phospholipid by an agonist, it is available for conversion by both enzymatic pathways. However, leukotriene synthesis may not occur unless intracellular calcium levels are elevated either by phagocytosis of particulate agonists or with calcium ionophore.  相似文献   

6.
The production of 5-lipoxygenase products from arachidonic acid was investigated in polymorphonuclear leukocytes (PMNL) isolated from non-diabetic and alloxan-induced diabetic rabbits: (i) production of 5-hydroxyeicosatetraenoic acid, leukotriene B4, and the two 6-trans-leukotriene B4 isomers were significantly decreased in the PMNL of diabetic rabbits when compared to non-diabetic rabbits; (ii) production of LTB4 and 5-HETE from diabetic PMNL required the addition of Ca2+ and A23187 to a greater degree than control incubations; and (iii) the availability of substrate in the PMNL of diabetics was not a limiting factor for 5-lipoxygenase product formation. Alternative pathways of arachidonic acid metabolism were also evaluated: the recovery of exogenous leukotriene B4 and 5-hydroxyeicosatetraenoic acid were identical using PMNL from control and diabetic rabbits and peptido-leukotrienes were not detected by radioimmunoassay. The data suggest that the activity of 5-lipoxygenase and the production of 5-hydroperoxyeicosatetraenoic acid in the diabetic PMNL may be limiting factors since the formation of leukotriene B4, leukotriene B4 isomers, and 5-hydroxyeicosatetraenoic acid are depressed in PMNL of diabetic rabbits. Alternative pathways do not account for the conversion of arachidonic acid to other products nor are the elimination pathways for LTB4 and 5-HETE different. Decreased formation of 5-hydroxyeicosatetraenoic acid and leukotriene B4 could predispose diabetic subjects to infection due to a decrease in mediators leading to the local accumulation of PMNL in the inflammatory response.  相似文献   

7.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

8.
Enzymic Synthesis of Leukotriene B4 in Guinea Pig Brain   总被引:9,自引:8,他引:1  
Leukotriene B4 [5(S), 12(R)-dihydroxy-6, 14-cis-8,10-trans-eicosatetraenoic acid] was obtained from endogenous arachidonic acid when slices of the guinea pig brain cortex were incubated with the calcium ionophore A 23187. Enzymes involved in its synthesis, arachidonate 5-lipoxygenase [arachidonic acid to 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid and subsequently to leukotriene A4] and leukotriene A4 hydrolase (leukotriene A4 to B4), were present in the cytosol fraction. Arachidonate 5-lipoxygenase was Ca2+-dependent, and was stimulated by ATP and the microsomal membrane, as was noted for the enzyme from mast cells. The lipid hydroperoxides stimulated 5-lipoxygenase by four- to sixfold. The leukotriene A4 hydrolase activity was rich in brain, and the specific activity (0.4 nmol/min/mg of protein) was much the same as that of guinea pig leukocytes. High activities of these enzymes were detected in the olfactory bulb, pituitary gland, hypothalamus, and cerebral cortex. Since leukotriene B4 is enzymically synthesized in the brain, possible roles related to neuronal functions or dysfunctions deserve to be examined.  相似文献   

9.
Arachidonate 5-lipoxygenase has been found so far in various types of leukocyte. When a homogenate of porcine pancreas was incubated with arachidonic acid, 5-hydroxy-6,8,11,14-eicosatetraenoic acid was predominantly produced concomitant with small amounts of compounds derived from leukotriene A4. After differential centrifugation of the homogenate, the 5-lipoxygenase activity was found predominantly in the 1000 x g pellet and 105,000 x g supernatant. When porcine pancreas was investigated immunohistochemically with anti-5-lipoxygenase antibody, Langerhans islets were unstained, and infiltration of 5-lipoxygenase-positive leukocytes was hardly observed. In contrast, acinar cells were positively stained. Immunoelectron microscopy demonstrated the localization of the enzyme along the nuclear membranes of the acinar cells.  相似文献   

10.
The synthesis of leukotriene B(4) from arachidonic acid requires the sequential action of two enzymes: 5-lipoxygenase and leukotriene A(4) hydrolase. 5-Lipoxygenase is known to be present in the cytoplasm of some leukocytes and able to accumulate in the nucleoplasm of others. In this study, we asked if leukotriene A(4) hydrolase co-localizes with 5-lipoxygenase in different types of leukocytes. Examination of rat basophilic leukemia cells by both immunocytochemistry and immunofluorescence revealed that leukotriene A(4) hydrolase, like 5-lipoxygenase, was most abundant in the nucleus, with only minor occurrences in the cytoplasm. The finding of abundant leukotriene A(4) hydrolase in the soluble nuclear fraction was substantiated by two different cell fractionation techniques. Leukotriene A(4) hydrolase was also found to accumulate together with 5-lipoxygenase in the nucleus of alveolar macrophages. This result was obtained using both in situ and ex vivo techniques. In contrast to these results, peripheral blood neutrophils contained both leukotriene A(4) hydrolase and 5-lipoxygenase exclusively in the cytoplasm. After adherence of neutrophils, 5-lipoxygenase was rapidly imported into the nucleus, whereas leukotriene A(4) hydrolase remained cytosolic. Similarly, 5-lipoxygenase was localized in the nucleus of neutrophils recruited into inflamed appendix tissue, whereas leukotriene A(4) hydrolase remained cytosolic. These results demonstrate for the first time that leukotriene A(4) hydrolase can be accumulated in the nucleus, where it co-localizes with 5-lipoxygenase. As with 5-lipoxygenase, the subcellular distribution of leukotriene A(4) hydrolase is cell-specific and dynamic, but differences in the mechanisms regulating nuclear import must exist. The degree to which these two enzymes are co-localized may influence their metabolic coupling in the conversion of arachidonic acid to leukotriene B(4).  相似文献   

11.
The goal of this study was to determine the effects of a putative specific cytosolic phospholipase A2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), on arachidonic acid (AA) release and lipid mediator biosynthesis by ionophore-stimulated human neutrophils. Initial studies indicated that AACOCF3 at concentrations 0-10 micro m did not affect AA release from neutrophils. In contrast, AACOCF3 potently inhibited leukotriene B4 formation by ionophore-stimulated neutrophils (IC50 approximately 2.5 micro m). Likewise, AACOCF3 significantly inhibited the biosynthesis of platelet activating factor. In cell-free assay systems, 10 micro m AACOCF3 inhibited 5-lipoxygenase and CoA-independent transacylase activities. [3H]AA labeling studies indicated that the specific activities of cell-associated AA mimicked that of leukotriene B4 and PtdCho/PtdIns, while the specific activities of AA released into the supernatant fluid closely mimicked that of PtdEtn. Taken together, these data argue for the existence of segregated pools of arachidonate in human neutrophils. One pool of AA is linked to lipid mediator biosynthesis while another pool provides free AA that is released from cells. Additionally, the data suggest that AACOCF3 is also an inhibitor of CoA-independent transacylase and 5-lipoxygenase. Thus, caution should be exercised in using AACOCF3 as an inhibitor of cytosolic phospholipase A2 in whole cell assays because of the complexity of AA metabolism.  相似文献   

12.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

13.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, and 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]-labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

14.
Incubation of isolated rat islets of Langerhans with melittin resulted in a dose-dependent stimulation of insulin secretion with half the maximal response occurring at 4 micrograms/ml melittin. The effect of melittin on insulin secretion was dependent on extracellular calcium, was inhibited by the phospholipase A2 inhibitor quinacrine and by the lipoxygenase inhibitor nordihydroguaiaretic acid. Stimulation of insulin secretion by melittin was associated with a calcium-dependent loss of [3H]arachidonic acid from phospholipids in islet cells prelabelled with [3H]arachidonic acid. Analysis of the islet phospholipids involved in this response revealed that the [3H]arachidonic acid was released predominantly from phosphatidylcholine. These results suggest that melittin may stimulate insulin secretion by activating phospholipase A2 in islet cells, causing the release of arachidonic acid from membrane phospholipid. The results are consistent with suggestions that the subsequent metabolism of arachidonic acid via the lipoxygenase pathway may be involved in regulating the insulin secretory response.  相似文献   

15.
Incubation of cell sonicates from monoclonal B cells with arachidonic acid led to the formation of leukotriene (LT) B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). In contrast, stimulation of intact B cells with the calcium ionophore A23187 +/- arachidonic acid did not, under similar conditions, lead to formation of LTB4. The identification of these products was based on reverse phase- and straight phase-HPLC analysis, UV-spectroscopy and gas chromatography-mass spectrometry. Cell sonicates of highly enriched human tonsillar B lymphocytes also converted arachidonic acid to LTB4 and 5-HETE. Activation of these cells with B cell mitogen and cytokines for three days led to an upregulation of 5-lipoxygenase activity. This study provides evidence for the biosynthesis of LTB4 from arachidonic acid in B cell lines and in normal human tonsillar B lymphocytes.  相似文献   

16.
The data on whether T cells produce leukotrienes or other 5-lipoxygenase metabolites of arachidonic acid is conflicting. We report that exogenous arachidonic acid added to phytohemagglutin-stimulated human T cells profoundly inhibits leukotriene B4 production, with 90% inhibition caused by 10(-6) M arachidonic acid. The 12- and 15-lipoxygenase pathways were also inhibited by arachidonic acid. Recent reports that human T cells produce no 5-lipoxygenase metabolites of arachidonic acid might be explained by the fact that the studies used greater than or equal to 10(-5)M arachidonic acid in the incubation media.  相似文献   

17.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

18.
Human neutrophils produce various compounds of the 5-lipoxygenase pathway, including (5S)-hydroxyeicosatetraenoic acid, leukotriene B4, its 6-trans isomers and omega-oxidation metabolites of LTB4, when the cells are stimulated with the Ca2+ ionophore A23187. The elevation in the extracellular pH (pHo) facilitated the cytoplasmic alkalinization induced by the ionophore as determined fluorometrically using 2',7'-bis(carboxyethyl)carboxyfluorescein and enhanced the production of all the 5-lipoxygenase metabolites. The production decreased when the alkalinization was blocked by the decrease in the pHo, the removal of the extracellular Na+ or the addition of specific inhibitors of the Na+/H+ exchange, such as 5-(NN-hexamethylene)amiloride, 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride. The alkalinization of the cytoplasm with methylamine completely restored the production suppressed by the removal of Na+ from the medium. These findings suggest that the change in the cytoplasmic pH (pHi) mediated by the Na+/H+ exchange regulates the production of the lipoxygenase metabolites. The site of the metabolism controlled by the pHi change seemed to be the 5-lipoxygenase, because the production of all the metabolites decreased in parallel and the release of [3H]arachidonic acid from the neutrophils in response to the ionophore was not affected by the pHi change. Furthermore, the production of the 5-lipoxygenase metabolites stimulated by A23187 with or without exogenous arachidonic acid showed a similar pHo-dependence and the production induced by N-formylmethionyl-leucylphenylalanine (chemotactic peptide) with exogenous arachidonic acid also decreased when the cytoplasmic alkalinization was inhibited.  相似文献   

19.
We studied the effects of a 5-lipoxygenase inhibitor, L-651,192, on the pulmonary dysfunction caused by endotoxemia in chronically instrumented unanesthetized sheep. The efficacy and selectivity of L-651,392 were tested by measuring in vivo production of leukotriene B4 (LTB4) and cyclooxygenase products of arachidonic acid after endotoxemia before and after pretreatment with L-651,392 and ex vivo from granulocytes and whole blood stimulated with calcium ionophore from sheep before and 24 h after pretreatment with L-651,392. A novel assay for LTB4 by high-performance liquid chromatography/gas chromatography/mass spectrometry techniques was developed as a measure of 5-lipoxygenase metabolism of arachidonic acid. L-651,392 proved to be an effective in vivo 5-lipoxygenase inhibitor in sheep. L-651,392 blocked the increase in LTB4 observed in lung lymph after endotoxemia in vivo in sheep as well as inhibited by 80% the ex vivo production of LTB4 by granulocytes removed from sheep treated 24 h earlier with L-651,392. Although L-651,392 blocked the increase in cyclooxygenase products of arachidonic acid observed in lung lymph after endotoxemia in vivo in sheep, the drug probably did not function directly as a cyclooxygenase inhibitor. L-651,392 did not attenuate the ex vivo production of thromboxane B2 by whole blood from sheep treated 24 h earlier with the drug. L-651,392 attenuated the alterations in pulmonary hemodynamics, lung mechanics, oxygenation, and lung fluid and solute exchange observed after endotoxemia in sheep. We speculate that 5-lipoxygenase products are a major stimulus for cyclooxygenase metabolism of arachidonic acid after endotoxemia in sheep.  相似文献   

20.
Pulmonary and splenic Kurloff cells have been purified from estrogen-treated guinea pig. Enzymatic digestion of lung tissue and mechanical dispersion of cells yielded about 650 x 10(6) viable cells. After centrifugal elutriation and centrifugation on continuous Percoll gradient, a population of high-density (1,100 g/ml) pulmonary Kurloff cells were obtained with high viability (approximately 99%) and purity (approximately 99%). Splenic Kurloff cells have been isolated by disruption of spleen tissue and centrifugation on continuous Percoll gradient. High-density splenic Kurloff cells (150 x 10(6) cells per spleen) were also obtained with high purity (approximately 99%) and viability (approximately 99%). Pulmonary and splenic Kurloff cells were incubated with various concentrations of arachidonic acid (10, 30 and 100 microM) in the absence or presence of 2 microM ionophore A23187. With 10 microM arachidonic acid the relative production of cyclooxygenase products was the following: TxB2 greater than PGE2 approximately PGI2. For an arachidonic acid concentration superior to 10 microM, the profile of release was PGE2 much greater than TxB2 greater than PGI2. Arachidonic acid metabolism through the 5-lipoxygenase pathway was also studied by incubating pulmonary or splenic Kurloff cells with 10 microM arachidonic acid in the absence or presence of 2 microM ionophore A23187, or in some experiments, with 2.5 microM leukotriene A4. Reverse phase HPLC profiles clearly indicated that high-density Kurloff cells did not express 5-lipoxygenase activity. However, these cells showed the ability to convert exogenous leukotriene A4 into leukotriene B4 suggesting the presence of LTA4 hydrolase activity. These data have been confirmed by a sensitive RIA method. This study constitutes the first report on the purification of pulmonary Kurloff cells and on arachidonic acid metabolism by these cells. The possible implications of Kurloff cells in various biological events are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号