首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of mammalian 5-lipoxygenase by aromatic disulfides
Authors:R W Egan  P H Gale
Abstract:As a primary step in leukotriene biosynthesis, arachidonic acid is converted into 5-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid by 5-lipoxygenase. This enzyme is studied in the supernatant fraction from sonified RBL-1 cells, a preparation that converts 1-14C]arachidonic acid to 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid and several 5,12-dihydroxyeicosatetraenoic acids including LTB4. In order to examine the reversibility of inhibitors, the supernatant fraction can be depleted of low molecular weight constituents by vacuum filtration. The 5-lipoxygenase is irreversibly inhibited by 500 microM N-ethyl-maleimide or 300 microM methyl methanethiolsulfonate, reagents that react covalently with protein sulfhydryl groups. In contrast, diphenyl disulfide reversibly inhibits this enzyme at 1-5 microM, irrespective of the GSH concentration in the supernatant. KCN also inhibits 5-lipoxygenase at 4 mM, suggesting the presence of a metal-containing prosthetic group. These observations imply that diphenyl disulfide and similar molecules with electron-releasing substituents on the aromatic rings could inhibit by binding to an electrophilic metallic center, the binding being stabilized by hydrophobic interactions between the enzyme and the aromatic groups on the flexible disulfide. Even though diphenyl disulfide does not inhibit soybean 15-lipoxygenase or endoperoxide synthase in cell-free systems, this compound does suppress prostaglandin as well as leukotriene synthesis in intact murine peritoneal macrophages and CXBG cells. Since lipoxygenases are susceptible to peroxide activation and peroxidase deactivation, changes in the redox state of the cell may alter arachidonic acid metabolism as effectively as actual enzyme inhibition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号