首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Ebola virus budding is mediated by two proline-rich motifs, PPxY and PTAP, within the viral matrix protein VP40. We have previously shown that a Nedd4-like protein BUL1, but not Nedd4, positively regulates budding of type D retrovirus Mason-Pfizer monkey virus (J. Yasuda, E. Hunter, M. Nakao, and H. Shida, EMBO Rep. 3:636-640, 2002). Here, we report that the cellular E3 ubiquitin ligase Nedd4 regulates budding of VP40-induced virus-like particles (VLPs) through interaction with the PPxY motif. Mutation of the active site cysteine (C894A), resulting in abrogation of ubiquitin ligase activity, impaired the function of Nedd4 on budding. In addition, the WW domains of Nedd4 are essential for binding to the viral PPxY motif, and a small fragment of Nedd4 containing only WW domains significantly inhibited Ebola VLP budding in a dominant-negative manner. Our findings suggest that the viruses containing PPxY as an L-domain motif specifically use E3 in the process of virus budding. We also examined the effects of overexpression of Tsg101 and its mutant. As expected, Tsg101 enhanced VP40-induced VLP release, and TsgDeltaC, which lacks its C-terminal half, inhibited VLP release. These results indicate that Nedd4, together with Tsg101, plays an important role in Ebola virus budding.  相似文献   

2.
Viral matrix proteins of several enveloped RNA viruses play important roles in virus assembly and budding and are by themselves able to bud from the cell surface in the form of lipid-enveloped, virus-like particles (VLPs). Three motifs (PT/SAP, PPxY, and YxxL) have been identified as late budding domains (L-domains) responsible for efficient budding. L-domains can functionally interact with cellular proteins involved in vacuolar sorting (VPS4A and TSG101) and endocytic pathways (Nedd4), suggesting involvement of these pathways in virus budding. Ebola virus VP40 has overlapping PTAP and PPEY motifs, which can functionally interact with TSG101 and Nedd4, respectively. As for vesicular stomatitis virus (VSV), a PPPY motif within M protein can interact with Nedd4. In addition, M protein has a PSAP sequence downstream of the PPPY motif, but the function of PSAP in budding is not clear. In this study, we compared L-domain functions between Ebola virus and VSV by constructing a chimeric M protein (M40), in which the PPPY motif of VSV M is replaced by the L domains of VP40. The budding efficiency of M40 was 10-fold higher than that of wild-type (wt) M protein. Overexpression of a dominant negative mutant of VPS4A or depletion of cellular TSG101 reduced the budding of only M40-containing VLPs but not that of wt M VLPs or live VSV. These findings suggest that the PSAP motif of M protein is not critical for budding and that there are fundamental differences between PTAP-containing viruses (Ebola virus and human immunodeficiency virus type 1) and PPPY-containing viruses (VSV and rabies virus) regarding their dependence on specific host factors for efficient budding.  相似文献   

3.
Marburg virus (MARV) VP40 is a matrix protein that can be released from mammalian cells in the form of virus-like particles (VLPs) and contains the PPPY sequence, which is an L-domain motif. Here, we demonstrate that the PPPY motif is important for VP40-induced VLP budding and that VLP production is significantly enhanced by coexpression of NP and GP. We show that Tsg101 interacts with VP40 depending on the presence of the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and plays an important role in VLP budding. These findings provide new insights into the mechanism of MARV budding.  相似文献   

4.
Late (L) domains are required for the efficient release of several groups of enveloped viruses. Three amino acid motifs have been shown to provide L-domain function, namely, PPXY, PT/SAP, or YPDL. The retrovirus Mason-Pfizer monkey virus (MPMV) carries closely spaced PPPY and PSAP motifs. Mutation of the PPPY motif results in a complete loss of virus release. Here, we show that the PSAP motif acts as an additional L domain and promotes the efficient release of MPMV but requires an intact PPPY motif to perform its function. Examination of HeLaP4 cells expressing PSAP mutant virus by electron microscopy revealed mostly late budding structures and chains of viruses accumulating at the cell surface with little free virus. In the case of the PPPY mutant virus, budding appeared to be mostly arrested at an earlier stage before induction of membrane curvature. The cellular protein TSG101, which interacts with the human immunodeficiency virus type 1 (HIV-1) PTAP L domain, was packaged into MPMV in a PSAP-dependent manner. Since TSG101 is crucial for HIV-1 release, this result suggests that the Gag-TSG101 interaction is responsible for the virus release function of the MPMV PSAP motif. Nedd4, which has been shown to interact with viral PPPY motifs, was also detected in MPMV particles, albeit at much lower levels. Consistent with a role of VPS4A in the budding of both PPPY and PTAP motif-containing viruses, the overexpression of ATPase-defective GFP-VPS4A fusion proteins blocked both wild-type and PSAP mutant virus release.  相似文献   

5.
The VP40 protein of Ebola virus can bud from mammalian cells in the form of lipid-bound, virus-like particles (VLPs), and late budding domains (L-domains) are conserved motifs (PTAP, PPxY, or YxxL; where "x" is any amino acid) that facilitate the budding of VP40-containing VLPs. VP40 is unique in that potential overlapping L-domains with the sequences PTAP and PPEY are present at amino acids 7 to 13 of VP40 (PTAPPEY). L-domains are thought to function by interacting with specific cellular proteins, such as the ubiquitin ligase Nedd4, and a component of the vacuolar protein sorting (vps) pathway, tsg101. Mutational analysis of the PTAPPEY sequence of VP40 was performed to understand further the contribution of each individual motif in promoting VP40 budding. In addition, the contribution of tsg101 and a second member of the vps pathway, vps4, in facilitating budding was addressed. Our results indicate that (i) both the PTAP and PPEY motifs contribute to efficient budding of VP40-containing VLPs; (ii) PTAP and PPEY can function as L-domains when separated and moved from the N terminus (amino acid position 7) to the C terminus (amino acid position 316) of full-length VP40; (iii) A VP40-PTAP/tsg101 interaction recruits tsg101 into budding VLPs; (iv) a VP40-PTAP/tsg101 interaction recruits VP40 into lipid raft microdomains; and (v) a dominant-negative mutant of vps4 (E228Q), but not wild-type vps4, significantly inhibited the budding of Ebola virus (Zaire). These results provide important insights into the complex interplay between viral and host proteins during the late stages of Ebola virus budding.  相似文献   

6.
The human T-cell leukemia virus type 1 (HTLV-1) Gag polyprotein contains two adjacent proline-rich motifs (sequence PPPYVEPTAP) in the C terminus of the matrix domain [corrected]. Proline-to-alanine mutations were introduced into either or both motifs of HTLV-1 to determine the effect on the release of HTLV-1 virus-like particles from 293T cells. The release of both single mutants was significantly reduced, whereas a double mutation in both motifs abolished the release of the HTLV-1 particles. Two-hybrid and in vitro binding assays showed that the HTLV-1 Gag polyprotein binds both Tsg101 and Nedd4 proteins. The interaction with HTLV-1 Gag required the central WW domain of Nedd4 and the ubiquitin enzyme variant (UEV) domain of Tsg101. We expressed various fragments of Nedd4 and Tsg101 proteins in 293T cells and tested for their ability to interfere with virion release mediated by the HTLV-1 Gag-Pro polyprotein. Fragments consisting of the N-terminal UEV domain of Tsg101 and the central WW and C-terminal Hect domains of Nedd4 protein all caused transdominant inhibition of HTLV-1 particle release. Similarly, inhibition of the proteasome significantly decreased HTLV-1 particle release. Furthermore, the WW domain overexpression caused an early arrest of HTLV-1 particle morphogenesis before the membrane is deformed into the typical half-shell structure. This result suggests that Nedd4 is involved early in budding of HTLV-1.  相似文献   

7.
Role of ESCRT-I in retroviral budding   总被引:1,自引:0,他引:1       下载免费PDF全文
Retroviral late-budding (L) domains are required for the efficient release of nascent virions. The three known types of L domain, designated according to essential tetrapeptide motifs (PTAP, PPXY, or YPDL), each bind distinct cellular cofactors. We and others have demonstrated that recruitment of an ESCRT-I subunit, Tsg101, a component of the class E vacuolar protein sorting (VPS) machinery, is required for the budding of viruses, such as human immunodeficiency virus type 1 (HIV-1) and Ebola virus, that encode a PTAP-type L domain, but subsequent events remain undefined. In this study, we demonstrate that VPS28, a second component of ESCRT-I, binds to a sequence close to the Tsg101 C terminus and is therefore recruited to the plasma membrane by HIV-1 Gag. In addition, we show that Tsg101 exhibits a multimerization activity. Using a complementation assay in which Tsg101 is artificially recruited to sites of HIV-1 assembly, we demonstrate that the integrity of the VPS28 binding site within Tsg101 is required for particle budding. In addition, mutation of a putative leucine zipper or residues important for Tsg101 multimerization also impairs the ability of Tsg101 to support HIV-1 budding. A minimal multimerizing Tsg101 domain is a dominant negative inhibitor of PTAP-mediated HIV-1 budding but does not inhibit YPDL-type or PPXY-type L-domain function. Nevertheless, YDPL-type L-domain activity is inhibited by expression of a catalytically inactive mutant of the class E VPS ATPase VPS4. These results indicate that all three classes of retroviral L domains require a functioning class E VPS pathway in order to effect budding. However, the PTAP-type L domain appears to be unique in its requirement for an intact, or nearly intact, ESCRT-I complex.  相似文献   

8.
Viral protein 40 (VP40) of Ebola virus appears equivalent to matrix proteins of other viruses, yet little is known about its role in the viral life cycle. To elucidate the functions of VP40, we investigated its ability to induce the formation of membrane-bound particles when it was expressed apart from other viral proteins. We found that VP40 is indeed able to induce particle formation when it is expressed in mammalian cells, and this process appeared to rely on a conserved N-terminal PPXY motif, as mutation or loss of this motif resulted in markedly reduced particle formation. These findings demonstrate that VP40 alone possesses the information necessary to induce particle formation, and this process most likely requires cellular WW domain-containing proteins that interact with the PPXY motif of VP40. The ability of VP40 to bind cellular membranes was also studied. Flotation gradient analysis indicated that VP40 binds to membranes in a hydrophobic manner, as NaCl at 1 M did not release the protein from the lipid bilayer. Triton X-114 phase-partitioning analysis suggested that VP40 possesses only minor features of an integral membrane protein. We confirmed previous findings that truncation of the 50 C-terminal amino acids of VP40 results in decreased association with cellular membranes and demonstrated that this deletion disrupts hydrophobic interactions of VP40 with the lipid bilayer, as well as abolishing particle formation. Truncation of the 150 C-terminal amino acids or 100 N-terminal amino acids of VP40 enhanced the protein's hydrophobic association with cellular membranes. These data suggest that VP40 binds the lipid bilayer in an efficient yet structurally complex fashion.  相似文献   

9.
Sequence motifs (L domains) have been described in viral structural proteins. Mutations in these lead to a defect at a late stage in virus assembly and budding. For several viruses, recruitment of an endosomal sorting complexes required for transport 1 subunit (Tsg101), a component of the class E vacuolar protein sorting (EVPS) machinery, is a prerequisite for virion budding. To effect this, Tsg101 interacts with the PT/SAP L domain. We have identified candidate L-domain motifs, PSAP, PPPI, and YEIL, in the prototypic foamy virus (PFV) Gag protein, based on their homology to known viral L domains. Mutation of the PSAP and PPPI motifs individually reduced PFV egress, and their combined mutation had an additive effect. When PSAP was mutated, residual infectious PFV release was unaffected by dominant negative Vps4 (an ATPase involved in the final stages of budding), and sensitivity to dominant negative Tsg101 was dramatically reduced, suggesting that the PSAP motif functions as a conventional class E VPS-dependent L domain. Consistent with this notion, yeast two-hybrid analysis showed a PSAP motif-dependent interaction between PFV Gag and Tsg101. Surprisingly, PFV release which is dependent on the PPPI motif was Vps4-independent and was partially inhibited by dominant negative Tsg101, suggesting that PPPI functions by an unconventional mechanism to facilitate PFV egress. Mutation of the YEIL sequence completely abolished particle formation and also reduced the rate of Gag processing by the viral protease, suggesting that the integrity of YEIL is required at an assembly step prior to budding and YEIL is not acting as an L domain.  相似文献   

10.
The structural proteins of HIV and Ebola display PTAP peptide motifs (termed 'late domains') that recruit the human protein Tsg101 to facilitate virus budding. Here we present the solution structure of the UEV (ubiquitin E2 variant) binding domain of Tsg101 in complex with a PTAP peptide that spans the late domain of HIV-1 p6(Gag). The UEV domain of Tsg101 resembles E2 ubiquitin-conjugating enzymes, and the PTAP peptide binds in a bifurcated groove above the vestigial enzyme active site. Each PTAP residue makes important contacts, and the Ala 9-Pro 10 dipeptide binds in a deep pocket of the UEV domain that resembles the X-Pro binding pockets of SH3 and WW domains. The structure reveals the molecular basis of HIV PTAP late domain function and represents an attractive starting point for the design of novel inhibitors of virus budding.  相似文献   

11.
Retroviruses use endosomal machinery to bud out of infected cells, and various Gag proteins recruit this machinery by interacting with either of three cellular factors as follows: ubiquitin ligases of the Nedd4 family, Tsg101, or Alix/Aip1. Here we show that the murine leukemia virus Gag has the unique ability to interact with all three factors. Small interfering RNAs against Tsg101 or Alix and dominant-negative forms of Nedd4 can all reduce production of virus-like particles. However, inactivating the Nedd4-binding site abolishes budding, whereas disrupting Tsg101 or Alix binding has milder effects. Nedd4 ubiquitin ligases are therefore essential, and Tsg101 and Alix play auxiliary roles. Most interestingly, overexpression of Alix can stimulate the release of Gag, and this occurs independently of most Alix partners Tsg101, Cin85, Alg-2, and endophilins. In addition, Gag mutants that do not bind Tsg101 or Alix concentrate on late endosomes and become very sensitive to dominant-negative forms of Nedd4 that do not conjugate ubiquitin. This suggests that the direct interaction of Gag with Tsg101 and Alix favors budding from the plasma membrane and relieves a requirement for ubiquitination by Nedd4.1. Other Nedd4-dependent Gag proteins also contain binding sites for Tsg101 or Alix, suggesting that this could be a common feature of retroviruses.  相似文献   

12.
Retroviral Gag proteins encode sequences, termed late domains, which facilitate the final stages of particle budding from the plasma membrane. We report here that interactions between Tsg101, a factor involved in endosomal protein sorting, and short peptide motifs in the HIV-1 Gag late domain and Ebola virus matrix (EbVp40) proteins are essential for efficient egress of HIV-1 virions and Ebola virus-like particles. EbVp40 recruits Tsg101 to sites of particle assembly and a short, EbVp40-derived Tsg101-binding peptide sequence can functionally substitute for the HIV-1 Gag late domain. Notably, recruitment of Tsg101 to assembling virions restores budding competence to a late-domain-defective HIV-1 in the complete absence of viral late domain. These studies define an essential virus-host interaction that is conserved in two unrelated viruses. Because the Tsg101 is recruited by small, conserved viral sequence motifs, agents that mimic these structures are potential inhibitors of the replication of these lethal human pathogens.  相似文献   

13.
Myers EL  Allen JF 《Journal of virology》2002,76(22):11226-11235
The final stages of budding and release of a retroviral particle from the cell require the late (L) domain of Gag. Recently, ubiquitin and ubiquitin ligases have been implicated in the late stages of retroviral budding. In a yeast two-hybrid screen of a T-cell cDNA library to identify cellular proteins that interact with human immunodeficiency virus type 2 (HIV-2) Gag polyprotein, we identified Tsg101, an inactive homologue of ubiquitin ligase E2. Tsg101 and HIV-2 Gag interact specifically in vitro and in vivo. The interaction requires the L domain PTAPP motif in the p6 domain of HIV-2 Gag and the N-terminal Ubc-conjugation homology domain of Tsg101. Tsg101 is incorporated into HIV-2 virions. Expression of the N-terminal Ubc-conjugation homology domain of Tsg101 inhibits the release of HIV-2 virus particles. Overexpression of Tsg101 results in an increase in the level of ubiquitination of HIV-2 Gag. Our results provide evidence for recruitment of the ubiquitination machinery of the cell during late stages of the viral life cycle, mediated by the viral Gag protein.  相似文献   

14.
The functionally exchangeable L domains of HIV-1 and Rous sarcoma virus (RSV) Gag bind Tsg101 and Nedd4, respectively. Tsg101 and Nedd4 function in endocytic trafficking, and studies show that expression of Tsg101 or Nedd4 fragments interfere with release of HIV-1 or RSV Gag, respectively, as virus-like particles (VLPs). To determine whether functional exchangeability reflects use of the same trafficking pathway, we tested the effect on RSV Gag release of co-expression with mutated forms of Vps4, Nedd4 and Tsg101. A dominant-negative mutant of Vps4A, an AAA ATPase required for utilization of endosomal sorting proteins that was shown previously to interfere with HIV-1 budding, also inhibited RSV Gag release, indicating that RSV uses the endocytic trafficking machinery, as does HIV. Nedd4 and Tsg101 interacted in the presence or absence of Gag and, through its binding of Nedd4, RSV Gag interacted with Tsg101. Deletion of the N-terminal region of Tsg101 or the HECT domain of Nedd4 did not prevent interaction; however, three-dimensional spatial imaging suggested that the interaction of RSV Gag with full-length Tsg101 and N-terminally truncated Tsg101 was not the same. Co-expression of RSV Gag with the Tsg101 C-terminal fragment interfered with VLP release minimally; however, a significant fraction of the released VLPs was tethered to each other. The results suggest that, while Tsg101 is not required for RSV VLP release, alterations in the protein interfere with VLP budding/fission events. We conclude that RSV and HIV-1 Gag direct particle release through independent ESCRT-mediated pathways that are linked through Tsg101-Nedd4 interaction.  相似文献   

15.
Ebola virus particle formation and budding are mediated by the VP40 protein, which possesses overlapping PTAP and PPXY late domain motifs (7-PTAPPXY-13). These late domain motifs have also been found in the Gag proteins of retroviruses and the matrix proteins of rhabdo- and arenaviruses. While in vitro studies suggest a critical role for late domain motifs in the budding of these viruses, including Ebola virus, it remains unclear as to whether the VP40 late domains play a role in Ebola virus replication. Alteration of both late domain motifs drastically reduced VP40 particle formation in vitro. However, using reverse genetics, we were able to generate recombinant Ebola virus containing mutations in either or both of the late domains. Viruses containing mutations in one or both of their late domain motifs were attenuated by one log unit. Transmission and scanning electron microscopy did not reveal appreciable differences between the mutant and wild-type viruses released from infected cells. These findings indicate that the Ebola VP40 late domain motifs enhance virus replication but are not absolutely required for virus replication in cell culture.  相似文献   

16.
The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind the cellular proteins Tsg101 and Alix, respectively. These interactions are thought to recruit members of the host fission machinery (ESCRT) to facilitate HIV-1 release. Here we report a new role for the p6-adjacent nucleocapsid (NC) domain in HIV-1 release. The mutation of basic residues in NC caused a pronounced decrease in virus release from 293T cells, although NC mutant Gag proteins retained the ability to interact with cellular membranes and RNAs. Remarkably, electron microscopy analyses of these mutants revealed arrested budding particles at the plasma membrane, analogous to those seen following the disruption of the PTAP motif. This result indicated that the basic residues in NC are important for virus budding. When analyzed in physiologically more relevant T-cell lines (Jurkat and CEM), NC mutant viruses remained tethered to the plasma membrane or to each other by a membranous stalk, suggesting membrane fission impairment. Remarkably, NC mutant release defects were alleviated by the coexpression of a Gag protein carrying a wild-type (WT) NC domain but devoid of all L domain motifs and by providing alternative access to the ESCRT pathway, through the in trans expression of the ubiquitin ligase Nedd4.2s. Since NC mutant Gag proteins retained the interaction with Tsg101, we concluded that NC mutant budding arrests might have resulted from the inability of Gag to recruit or utilize members of the host ESCRT machinery that act downstream of Tsg101. Together, these data support a model in which NC plays a critical role in HIV-1 budding.  相似文献   

17.
The matrix (M) proteins of vesicular stomatitis virus (VSV) and rabies virus (RV) play a key role in both assembly and budding of progeny virions. A PPPY motif (PY motif or late-budding domain) is conserved in the M proteins of VSV and RV. These PY motifs are important for virus budding and for mediating interactions with specific cellular proteins containing WW domains. The PY motif and flanking sequences of the M protein of VSV were used as bait to screen a mouse embryo cDNA library for cellular interactors. The mouse Nedd4 protein, a membrane-localized ubiquitin ligase containing multiple WW domains, was identified from this screen. Ubiquitin ligase Rsp5, the yeast homolog of Nedd4, was able to interact both physically and functionally with full-length VSV M protein in a PY-dependent manner. Indeed, the VSV M protein was multiubiquitinated by Rsp5 in an in vitro ubiquitination assay. To demonstrate further that ubiquitin may be involved in the budding process of rhabdoviruses, proteasome inhibitors (e.g., MG132) were used to decrease the level of free ubiquitin in VSV- and RV-infected cells. Viral titers measured from MG132-treated cells were reproducibly 10- to 20-fold lower than those measured from untreated control cells, suggesting that free ubiquitin is important for efficient virus budding. Last, release of a VSV PY mutant was not inhibited in the presence of MG132, signifying that the functional L domain of VSV is required for the inhibitory effect exhibited by MG132. These data suggest that the cellular ubiquitin-proteasome machinery is involved in the budding process of VSV and RV.  相似文献   

18.
The Gag protein of human T-cell leukemia virus type 1 (HTLV-1) contains the conserved sequences PPxY and PTAP, which are putative viral motifs required for budding (L-domain motifs). We show here that the PPxY motif, but not the PTAP motif, is essential for HTLV-1 virion budding from the plasma membrane. In addition, we show that overexpression of Nedd4 enhances HTLV-1 budding and that Nedd4 interacts with Gag via its WW domain. The HECT domain of Nedd4 is also required for budding. These results indicate that Nedd4 or a Nedd4-related ubiquitin ligase plays a critical role in HTLV-1 budding.  相似文献   

19.
The release of Bluetongue virus (BTV) and other members of the Orbivirus genus from infected host cells occurs predominantly by cell lysis, and in some cases, by budding from the plasma membrane. Two nonstructural proteins, NS3 and NS3A, have been implicated in this process. Here we show that both proteins bind to human Tsg101 and its ortholog from Drosophila melanogaster with similar strengths in vitro. This interaction is mediated by a conserved PSAP motif in NS3 and appears to play a role in virus release. The depletion of Tsg101 with small interfering RNA inhibits the release of BTV and African horse sickness virus, a related orbivirus, from HeLa cells up to fivefold and threefold, respectively. Like most other viral proteins which recruit Tsg101, NS3 also harbors a PPXY late-domain motif that allows NS3 to bind NEDD4-like ubiquitin ligases in vitro. However, the late-domain motifs in NS3 do not function as effectively in facilitating the release of mini Gag virus-like particles from 293T cells as the late domains from human immunodeficiency virus type 1, human T-cell leukemia virus, and Ebola virus. A mutagenesis study showed that the arginine residue in the PPRY motif is responsible for the low activity of the NS3 late-domain motifs. Our data suggest that the BTV late-domain motifs either recruit an antagonist that interferes with budding or fail to recruit an agonist which is different from NEDD4.  相似文献   

20.
Like other enveloped viruses, HIV-1 uses cellular machinery to bud from infected cells. We now show that Tsg101 protein, which functions in vacuolar protein sorting (Vps), is required for HIV-1 budding. The UEV domain of Tsg101 binds to an essential tetrapeptide (PTAP) motif within the p6 domain of the structural Gag protein and also to ubiquitin. Depletion of cellular Tsg101 by small interfering RNA arrests HIV-1 budding at a late stage, and budding is rescued by reintroduction of Tsg101. Dominant negative mutant Vps4 proteins that inhibit vacuolar protein sorting also arrest HIV-1 and MLV budding. These observations suggest that retroviruses bud by appropriating cellular machinery normally used in the Vps pathway to form multivesicular bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号