首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以分布于秦岭的金花忍冬(Lonicera chrysantha Turcz.)、忍冬(L.japonica Thunb.)、葱皮忍冬(L.ferdinandii Franch.)和金银忍冬(L.maackii(Rupr.)Maxim.)为对象,通过定位观察、人工授粉实验、人为设置实验斑块的方法对忍冬属4种植物的开花生物学特性、繁育系统、花色变化现象、传粉过程进行了研究。结果表明,4种植物的单花花期、花部特征存在差异。人工授粉实验显示,4种植物均存在一定的花粉限制,自交不亲和。除葱皮忍冬外,其余3种植物随着花色由白变黄,花粉和花蜜报酬减少、雌雄生殖能力逐渐降低;葱皮忍冬花变色后花蜜量变化不显著,且仍保留较强的雌性生殖能力。变色花的保留被认为是植物的一种生殖策略,通过增大植物的花展示来扩大自身的吸引力,以吸引更多远距传粉者访花。人为控制白、黄花不同数量比的实验结果表明,大多数传粉者偏向访问白花(变色前的花),且白花提供的报酬量和黄花(变色后的花)数量显著影响传粉者的访花频率,即当花蜜量减少或黄花数量增多时,传粉者访花频率随之降低。因此,我们认为忍冬属4种植物的花色变化可能除了增大植物对远距传粉者的吸引力外,对近距传粉者的访花行为也可能具有一定的影响。当传粉者接近植株时,变色后的花可能暗示其花蜜(花粉)报酬已经发生变化,并驱使昆虫离开并飞向同株或异株植物新开放的报酬丰富的白花,这既有利于提高传粉者的觅食效率,又能降低植物同株异花授粉的几率,对忍冬属植物及传粉者都具有重要意义,是植物长期与授粉昆虫相互适应的反映。  相似文献   

2.
Floral colour change in Pedicularis monbeigiana (Orobanchaceae)   总被引:1,自引:0,他引:1  
We examined the effects of the retention of colour-changed flowers on long- and short-distance attractiveness of bumblebees and the likelihood of successive flower visits by bumblebees in Pedicularis monbeigiana. The lower lip changed colour with age from white to purple. Hand geitonogamous pollination significantly reduced seed production. No pollen limitation occurred in this species. Purple-phase flowers contributed minimally to pollinator attractiveness at long distance. The combination of less reproductive flowers with a lower amount of reward and floral colour change enabled plants to direct pollinators to reproductive, highly rewarding white flowers at close range. A high percentage of purple-phase flowers in an inflorescence was associated with a marked reduction in the frequency of successive flower visits to individual plants. We suggest floral colour change in P. monbeigiana may serve as a mechanism for enhancing inter-individual pollen transfer and reducing intra-individual pollen transfer.  相似文献   

3.
We examined the significance of retaining color-changed flowers in pollination success of Weigela middendorffiana through a single visit of bumble bees. Inner parts of flowers changed color with age from yellow to red. In an investigation of the mating system, duration of each color phase, reproductive ability of each of the color-phase flowers, and the effects of color-changed flowers on bumble bee behavior (1) flowers of this species were self-incompatible, (2) color-changed flowers provided little reward to pollinators and little residual reproductive ability, (3) the timing of floral color change was delayed with the progress of flowering season within individual plants, while the duration of the red phase shortened with the progress of flowering season, and (4) red-phase flowers did not attract bumble bees at a distance but did contribute to reducing the number of successive flower visits during a single stay within the plants. Red-phase flowers seemed to indicate the low reward level of old flowers and functioned as a cue to discourage pollinators from staying longer on the same plant. Our results predict that the retention of color-changed flowers without sexual function can enhance the pollination success of a whole plant through male function by reducing successive flower visits during a single stay of pollinators, i.e., geitonogamous pollination.  相似文献   

4.
Floral color changes are common among Melastomataceae and have been interpreted as a warning mechanism for bees to avoid old flowers, albeit increasing long-distance flower display. Here the reproductive systems of Tibouchina pulchra and T. sellowiana were investigated by controlled pollinations. Their pollinators were identified, and experiments on floral color and fragrance changes were conduced to verify if those changes affect the floral visitation. Both Tibouchina species are self compatible. The flowers lasted three days or more, and the floral color changed from white in the 1st day to pink in the following days. Pollen deposition on stigma induced floral color change. The effectiveness of the pollination is dependent on bees’ size; only large bees were regarded as effective pollinators. In experimental tests, the bees in T. pulchra preferred the natural white flowers while the visitors of T. sellowiana were attracted by both natural and mimetic 1st-day flowers (2nd-day flowers with experimentally attached 1st-day flower petals). During the experiments on floral fragrance, the bees visited both natural and mimetic 1st-day flowers (2nd-day flowers with 1st-day flower scents). In both experiments, the bees avoided natural 2nd-day flowers, but seldom visited modified 2nd-day flowers. The attractiveness of T. pulchra and T. sellowiana flowers cannot be attributed exclusively to the color or the fragrance separately, both factors seemingly act together.  相似文献   

5.
Natural selection has directed the evolution of floral traits so that pollinator visits are manipulated to maximize the fitness of individual plants by directing which other individual sires its seeds. In some plants, flowers change color over time and may have the ability to direct pollinators to rewarding flowers. In addition, by varying when pollen is available and when stigmas are receptive, protandrous plants can show variation in selfing rates. In this study, the association between color change and gender transition in flowers of Saponaria officinalis was examined. Anthocyanins were extracted from flowers of each gender stage to measure color using spectrophotometry. Female‐phase flowers were found to have significantly higher anthocyanin concentration than male‐phase flowers in both natural populations and experimental plots. This color change corresponded to a decrease in male sexual function, which was measured by the percentage of pollen grains stained as viable by lactophenol aniline blue and germinated on Brewbaker–Kwack media. Color change was phenotypically plastic. Plants grown in full sun had a more extensive color change than those grown in shaded experimental plots, and this effect was reversed the following year when the shading was removed. Pollinator observations documented both diurnal and nocturnal insect visitation. Fruit and seed set were equivalent on inflorescences bagged during daylight versus night, indicating that both diurnal and nocturnal insects are effective pollinators. If pollinators discriminate based on color, this could potentially reduce within‐plant floral visits and also geitonogamy. This study is the first to document flower color change and moth pollination in Saponaria officinalis.  相似文献   

6.
Mating opportunities, pollination intensity, and pollen dispersal ability may vary with variation in floral traits such as color, size, and shape. Where these traits are selected by pollinators for enhanced elaboration, they should evolve toward the equilibrium between selection for further elaboration and selection against this through reduced fecundity or vitality. Here we show that pollinator-borne fungal diseases of plants may be a factor influencing the position of this equilibrium. Populations of the rock pink, Dianthus silvester often contain individuals infected with the anther smut fungus Microbotryum violaceum (= Ustilago violacea). In a naturally infected population in the Alps of eastern Switzerland we investigated how intrapopulation variation in flower size and nectar rewards influenced spore deposition and how floral traits varied with disease status. We found that spore deposition increased with increasing petal size, suggesting that large-flowered plants were at a greater risk of disease. Spore deposition was also higher for plants growing in patches with many or a high proportion of diseased neighbors. Multiple regression analyses showed that petal size or nectar reward influenced spore deposition when the effects of neighborhood disease abundance were controlled statistically. In sequential analyses, after removing the effects of disease density or frequency and plant gender, petal length explained significant variation in spore deposition. Diseased plants had reduced female reproductive organs, but calyx size was intermediate between that of healthy perfect and female flowers of this gynodioecious-gynomonoecious species, and diseased plants bore flowers with the largest petals. This may reflect a symptom of this disease or the cause, if larger-flowered plants are more likely to become infected. We conclude that investment to pollinator attraction may bring an enhanced risk of contracting this sterilizing pollinator-borne disease, so natural selection by the fungus M. violaceum acts to lower attractiveness to pollinators.  相似文献   

7.
Abstract Floral color changes are common in Weigela and the retention of post‐change flowers has been interpreted as a mechanism to increase attractiveness from a long distance and shorten pollinators’ lingering time on the inflorescence(s) of individual plants. In the present study, we investigated the temporal pattern of floral color change and time required for pollen tube growth in the shrub Weigela japonica var. sinica. Over the 4‐day anthesis, the color of the corolla in this species changes from white to red and the color cue changes from yellow to purple. The duration of both the white phase and the intermediate phase is approximately 1 day and the duration of the red phase is approximately 2 days. Our studies showed that color change in Weigela japonica var. sinica is age‐dependent but independent of pollinator visits and flower pollination. Post‐change flowers lost most of both the male and female residual reproductive ability and retained no rewards for pollinators. It took at least 3 days for a pollen tube to grow to the ovules and achieve fertilization. Thus, retention of post‐change flowers is necessary for the completion of pollen tube growth. Our results indicate that the temporal pattern of color change and time requirement for pollen tube growth are most likely related events.  相似文献   

8.
The present study provides new information about the reproductive biology of Boswellia sacra (Burseraceae), focusing on the nectary and its attractiveness for pollinators. The nectary disc changes its color from yellow to orange and red during the flower development. The colors are related to the main period of the stigmatic receptivity, to the dehiscence of anthers with pollen presentation and the nectar secretion. Pollinators preferentially visit the flowers in the “yellow” phase and neglect the “red phase”. This suggests a sophisticated dialogue between the plant and its pollinators. The color change from yellow to red occurs in a very short time (less than 24 h) and it is due to the accumulation of anthocyanins. Despite this dialogue between plant and pollinators, the number of fruits is often scanty.  相似文献   

9.
Floral traits that increase attractiveness to pollinators are predicted to evolve through selection on male function rather than on female function. To determine the importance of male-biased selection in dioecious Wurmbea dioica, we examined sexual dimorphism in flower size and number and the effects of these traits on pollinator visitation and reproductive success of male and female plants. Males produced more and larger flowers than did females. Bees and butterflies responded to this dimorphism and visited males more frequently than females, although flies did not differentiate between the sexes. Within sexes, insect pollinators made more visits to and visited more flowers on plants with many flowers. However, visits per flower did not vary with flower number, indicating that visitation was proportional to the number of flowers per plant. When flower number was experimentally held constant, visitation increased with flower size under sunny but not overcast conditions. Flower size but not number affected pollen removal per flower in males and deposition in females. In males, pollen removal increased with flower size 3 days after flowers opened, but not after 6 days when 98% of pollen was removed. Males with larger flowers therefore, may have higher fitness not because pollen removal is more complete, but because pollen is removed more rapidly providing opportunities to pre-empt ovules. In females, pollen deposition increased with flower size 3 days but not 6 days after flowers opened. At both times, deposition exceeded ovule production by four-fold or more, and for 2 years seed production was not limited by pollen. Flower size had no effect on seed production per plant and was negatively related to percent seed set, implying a tradeoff between allocation to attraction and reproductive success. This indicates that larger flower size in females is unlikely to increase fitness. In both sexes, gamete production was positively correlated with flower size. In males, greater pollen production would increase the advantage of large flowers, but in females more ovules may represent a resource cost. Selection to increase flower size and number in W. dioica has probably occurred through male rather than female function. Received: 15 June 1997 / Accepted: 12 February 1998  相似文献   

10.
Some flowering plants signal the abundance of their rewards by changing their flower colour, scent or other floral traits as rewards are depleted. These floral trait changes can be regarded as honest signals of reward states for pollinators. Previous studies have hypothesized that these signals are used to maintain plant-level attractiveness to pollinators, but the evolutionary conditions leading to the development of honest signals have not been well investigated from a theoretical basis. We examined conditions leading to the evolution of honest reward signals in flowers by applying a theoretical model that included pollinator response and signal accuracy. We assumed that pollinators learn floral traits and plant locations in association with reward states and use this information to decide which flowers to visit. While manipulating the level of associative learning, we investigated optimal flower longevity, the proportion of reward and rewardless flowers, and honest- and dishonest-signalling strategies. We found that honest signals are evolutionarily stable only when flowers are visited by pollinators with both high and low learning abilities. These findings imply that behavioural variation in learning within a pollinator community can lead to the evolution of an honest signal even when there is no contribution of rewardless flowers to pollinator attractiveness.  相似文献   

11.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

12.
Almost one-third of all species in the familyOrchidaceae offer no reward to insect pollinators. In the absence of a reward, floral display (number of flowers), may be the most important component of insect attraction but the role of floral display in capsule production of both deceptive (nectarless) and rewarding (nectariferous) orchids has not yet been satisfactorily explored. Based on our theoretical considerations, we propose and test here the following hypotheses: (i) deceptive species flower earlier than rewarding ones, (ii) reproductive success in deceptive species is lower than that in rewarding ones, (iii) reproductive success is independent of the number of flowers in the inflorescence in both deceptive and rewarding orchids. Our data supported hypotheses (i) and (ii). In 9 out of our 12 populations of deceptive species and in 10 out of 12 populations of rewarding species we found support for our hypothesis (iii).  相似文献   

13.
I examined the adaptive significance of two floral traits in the perennial herb, Lupinus argenteus: 1) the retention of corollas on “spent” flowers, i.e., flowers containing inviable pollen, unreceptive stigmas, and negligible pollinator rewards and 2) a change in corolla color of retained “spent” flowers, which is restricted to a spot on the banner petal. At anthesis, this spot is yellow, and approximately four days later, it changes to purple. After the change, purple flowers remain on plants an additional 5–7 days before corolla abscission occurs; purple flowers were avoided by pollinators, presumably because they contained less pollen (rewards) than yellow ones. I experimentally tested the hypothesis that purple flowers contribute to the floral display of the plant by removing varying numbers of spent flowers and assessing the effect on pollination visitation. Pollinators preferentially approached and foraged on plants with greater numbers of flowers per inflorescence; they did not discriminate between yellow (rewarding) and purple (nonrewarding) flowers at interplant distances greater than 0.4 meters but would preferentially forage on plants with more total flowers, even if these individuals contained fewer rewarding flowers. Thus, spent flowers increased the overall attractiveness of plants to pollinators. In theory, color change may benefit plants in two ways. First, by directing pollinators to rewarding flowers, the change may increase pollinator foraging efficiency, with the result that pollinators visit more flowers before leaving plants (pollinator-tenure mechanism). Second, by directing pollinators to receptive flowers, the color change may prevent incoming pollen from being wasted on unreceptive stigmas and may prevent collection of inviable pollen (pollination-efficiency mechanism). I tested the pollinator-tenure mechanism experimentally by removing pollen from yellow flowers, thereby reducing the reliability of the color-reward signal. Pollinators visited fewer total flowers on experimental plants than on controls, resulting in reduced seed production in one year.  相似文献   

14.
1. In insect‐pollinated plants, pollinator attraction is influenced by flowers (e.g. number, size) and their associated rewards (e.g. pollen, nectar). These traits can depend on plant interactions. Indeed, below‐ground competition between plants can lead to a decrease in flower or reward production in insect‐pollinated species. 2. Wind‐pollinated plants, in particular, which are almost never studied in plant–pollinator networks, can alter insect‐pollinated plants' attractiveness through competition for nutrients. The response of pollinators to such changes has never been investigated. 3. A pot experiment was carried out in which an insect‐pollinated species, Echium plantagineum, was grown in binary mixture with three wind‐pollinated species selected to exert a panel of competitive interactions. Below‐ground competition was controlled using dividers limiting interspecific root competition. Floral traits of E. plantagineum (i.e. flower production, floral display size, flower size and nectar production) were measured. For each species mixture, the visits (i.e. first visit, number of visits, 10‐min sequences) of Bombus terrestris individuals released in a flight cage containing two pots were followed, one with and one without below‐ground competition. 4. Below‐ground competition significantly affected nectar's sucrose concentration but did not influence flower and nectar production. Likewise, pollinator visits were not influenced by below‐ground competition. Competitor identity significantly influenced flower and reward production of E. plantagineum, with a decrease in the presence of the most competitive wind‐pollinated species. A tendency for faster flower visitation events was also detected in the presence of the least competitive competitor. This study raises new questions regarding the influence of wind‐pollinated plants on plant–pollinator interactions.  相似文献   

15.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

16.
The evolution of floral traits is often attributed to pollinator‐mediated selection; however, the importance of pollinators as selective agents in arctic environments is poorly resolved. In arctic and subarctic regions that are thought to be pollen limited, selection is expected to either favor floral traits that increase pollinator attraction or promote reproductive assurance through selfing. We quantified phenotypic selection on floral traits in two arctic and two subarctic populations of the self‐compatible, but largely pollinator‐dependent, Parrya nudicaulis. Additionally, we measured selection in plants in both open pollination and pollen augmentation treatments to estimate selection imposed by pollinators in one population. Seed production was found to be limited by pollen availability and strong directional selection on flower number was observed. We did not detect consistently greater magnitudes of selection on floral traits in the arctic relative to the subarctic populations. Directional selection for more pigmented flowers in one arctic population was observed, however. In some populations, selection on flower color was found to interact with other traits. We did not detect consistently stronger selection gradients across all traits for plants exposed to pollinator selection relative to those in the pollen augmentation treatment; however, directional selection tended to be higher for some floral traits in open‐pollinated plants.  相似文献   

17.
花色多样性与变异的研究进展   总被引:1,自引:0,他引:1  
花的颜色不仅在不同物种之间有着丰富的多样性,同一物种的不同居群或个体之间也有着花色的多态性,同一花中的不同器官甚至同一类型的器官也有颜色差异。了解花色多样性的形成和维持机制,有助于揭示花的演化。经典的观点认为,花色是植物提供给传粉者的视觉信号,能促进传粉和提高觅食效率。在分析花色多样性的基础上,本文介绍了4种不同的研究方法,并论述了当前解释花色多样性的3个主要假说。提出今后的研究有必要结合系统发育的分析方法,综合考虑传粉者、植食动物、物理环境等多个因子的选择作用,才能深入理解花色的多样性与演化。  相似文献   

18.
Flowers of Weigela middendorffiana change the color from yellow to red. The previous study revealed that red-phase flowers no longer have sexual function and nectar, and bumblebees selectively visit yellow-phase flowers. The present study examined how retaining color-changed flowers can regulate the foraging behavior of bumblebees and pollen transport among flowers within (geitonogamous pollination) and between (outcrossing pollination) plants and how the behavior is influenced by display size (i.e., number of functional flowers) and visitation frequency. The visitation frequencies of bumblebees to plants and successive flower probes within plants were observed in the field using plants whose flower number and composition of the two color-phase flowers had been manipulated. To evaluate pollination efficiency over multiple pollinator visits, a pollen transport model was constructed based on the observed bumblebee behavior. In the simulation, three flowering patterns associated with display size and existence of color-changed flowers were postulated as follows: Type 1, large display (100 functional flowers) and no retention of color-changed flowers; Type 2, small display (50 functional flowers) and retention of color-changed flowers (50 old flowers), and; Type 3, large display (100 functional flowers) and retention of color-changed flowers (100 old flowers). Color-changed flowers did not contribute to increasing bumblebee attraction at a distance but reduced the number of successive flower probes within plants. Comparisons of pollen transfer between Types 1 and 3 revealed that the retention of color-changed flowers did not influence the total amount of pollen exported when pollinator visits were abundant (>100 visits) but decreased geitonogamous pollination. Comparisons between Types 2 and 3 revealed that the discouragement effect of floral color change on successive probes accelerated in plants with a large display size. Overall, the floral color change strategy contributed to reduce geitonogamous pollination, but its effectiveness was highly sensitive to display size and pollinator frequency.  相似文献   

19.
We quantified the differences in floral characters and attractiveness to flower visitors under natural conditions between the sexual types in the gynodioecious plant Glechoma longituba. We also manipulated flowers by altering corolla size or nectar volume, or by removing anthers, to examine the effect of these primary and secondary attractants (i.e. rewards and advertisements) on attractiveness. A change in corolla size and shape reduced visiting frequency and pollen load. Removal of anthers did not affect visiting rates, but significantly reduced pollination rates and stigmatic pollen load. A decrease in the nectar volume of a flower was associated with a reduction in handling time and pollen loads on stigmas. These results show that corolla size is an important advertisement to pollinators (particularly at greater distance), which associate hermaphrodite flowers with a larger corolla and a larger volume of nectar than female flowers. We found that artificial changes in population structure affected the behavior of pollinators as well as the pollination rates of flowers. We suggest that the pattern of distribution of hermaphrodite and female clones in a population may serve to avoid pollen limitation in a female clone or patch. This effect may ensure female reproductive success and allow for the maintenance of female individuals in natural populations of this gynodioecious plant.  相似文献   

20.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号