首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antioxidative response to cadmium in roots and leaves of tomato plants   总被引:1,自引:0,他引:1  
Treatment of tomato seedlings (Lycopersicon esculentum Mill. cv. 63/5 F1) with increasing CdCl2 concentrations in the culture medium resulted in Cd accumulation more important in roots than in leaves. Biomass production was severely inhibited, even at low Cd concentration. Cd reduced chlorophyll content in leaves and enhanced lipid peroxidation. An increase in antioxidative enzyme (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase) activities was more pronounced in leaves than in roots, while catalase activity increased only in roots. In addition, changes in isoenzyme composition were observed using the non-denaturing polyacrylamid gel electrophoresis.  相似文献   

2.
Embryogenic callus cultures of lemon (Citrus limon L. Burm f. cv Verna), were selected for resistance to salt stress (170 mM NaCl). Inorganic analysis showed that selected callus accumulated more Na+ and Cl- ions than the non-selected one. Moreover, the salt-tolerant C. limon callus exhibited an increase in the activity of antioxidant enzymes involved in oxygen metabolism, with the induction of a new superoxide dismutase isozyme and an increase of the peroxidase activity while the catalase activity was unchanged. Proline and total sugar, mainly sucrose, concentrations increases significantly in salt-tolerant cells as compared to control cells. On the other hand, the selected cell line also showed an increase in choline and glycine betaine, but to lesser extent.Abbreviations BSA bovine serum albumin - P5CR pyrroline-5-carboxylated reductase - QAC quaternary ammonium compounds - SOD superoxide dismutase  相似文献   

3.
Changes in the activities of peroxidase, ascorbate peroxidase, catalase and superoxide dismutase in rice in response to infection by Rhizoctonia solani were studied. A significant increase in peroxidase activity was observed in R. solani-inoculated rice leaf sheaths 1 day after inoculation and the maximum enzyme activity was recorded 3 days after inoculation at which period a 3-fold increase in peroxidase activity was observed compared to the untreated control. Three peroxidase isozymes viz., PO-4, PO-5 and PO-6 were induced in rice upon infection by R. solani. Ascorbate peroxidase and catalase activities significantly increased 1–2 days after inoculation and the maximum enzyme activities were recorded 5 days after inoculation. Superoxide dismutase activity increased significantly 2 days after inoculation and increased progressively, reaching four times the control value at 7 days after inoculation.  相似文献   

4.
Summary The antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured in the rete mirabile and gas gland epithelium area of the swim bladder of the toadfish Opsanus tau. When the concentration of enzyme in the swim bladder was compared with the concentration in other organs (kidney, heart, gills) of the same fish, the swim bladder was found to have the highest concentration of superoxide dismutase but relatively low levels of glutathione peroxidase and catalase.Cytochemical assay for the peroxidatic activity of catalase confirmed that virtually no catalase is present in epithelial cells of the gas gland. A similar assay for peroxidase revealed a cyanide-sensitive peroxidase in the multilamellar bodies of these cells. Most of the catalase and peroxidase in the rete mirabile appears to be confined to the granules of neutrophils and the cytoplasm of erythrocytes. Enzyme activity in the neutrophils is not inhibited by 10-1 M KCN. Cyanide does appear to inhibit the peroxidase activity in erythrocytes but has little effect on catalase in these cells.Supported by grant No. HL23338 from the National Institutes of Health  相似文献   

5.
Salt tolerance was studied in the callus cultures of Suaeda nudiflora Moq. a dicotyledonous succulent halophyte. Growth was significantly inhibited at 50, 100, 150 and 200 mM NaCl. Inorganic ions and proline accumulated in response to salinity. Ion accumulation pattern reflected the utilization of Na+ as an osmoticum. Na+/K+ ratio rose steadily as a function of external NaCl concentration. Salt stress enhanced the activity of peroxidase, whereas it decreased activities of superoxide dismutase and catalase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The effects of exogenous abscisic acid (ABA) on lead tolerance in rice (Oryza sativa L.) seedlings were investigated. Pre-treatment with 0.1 g m3 ABA for 2 d restricted amount of Pb translocated from roots to shoots, decreased malondialdehyde and H2O2 contents in leaves, and alleviated Pb-induced decrease in plant growth and leaf chlorophyll content. Further, ABA pre-treatment adjusted leaf antioxidative enzyme activities (increased ascorbate peroxidase and catalase activities while decreased superoxide dismutase activity) and so alleviated oxidative stress.  相似文献   

7.
In Arabidopsis thaliana leaves a strong increase of H2O2 content was induced by application of methyl jasmonate (JAMe) through the root system, but the induction only slightly depended on JAMe concentration. The activity of superoxide dismutase and ascorbic acid peroxidase increased at lower JAMe concentrations and decreased at higher ones. Catalase activity decreased proportionally to JAMe concentration (in comparison with control plants). The sum of ascorbic acid and dehydroascorbate content at 10−6 M JAMe was similar to the control, but at higher concentrations it increased, especially due to a higher ascorbate accumulation. Methyl jasmonate applied directly to the extract of leaves (in vitro experiment) also induced a strong increase in H2O2 level, even at a low concentration (10−8 M). Since lower JAMe concentrations induced weak superoxide dismutase and did not change catalase and peroxidase activity, it is suggested that in this case a high level of hydrogen peroxide was not the result of the activity of the mentioned enzymes. JAMe-induction of H2O2 increase at the highest JAMe concentration resulted from SOD activity. Our in vivo and in vitro experiments suggest that jasmonate can influence oxidative stress not only through gene expression but also by its direct effect on enzyme activity.  相似文献   

8.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   

9.
Ali MB  Yu KW  Hahn EJ  Paek KY 《Plant cell reports》2006,25(6):613-620
The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2 ), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 μM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2 accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2 stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures.  相似文献   

10.
The toxicity of nitrofurantoin was studied on human WI-38 fibroblasts: this chemical was lethal when added at concentrations higher than 5·10−5 M in the culture medium. The protection afforded by anitoxidants was then tested: α-tocopherol gave at 10−4 M a light protection in contrast to ascorbic acid which even became toxic at high concentrations. We also tested catalase, superoxide dismutase and glutathione peroxidase introduced intracellularly by the microinjection technique. On a molecular basis, glutathione peroxidase was 23-times more efficient than catalase and 3000-times more than superoxide dismutase. The results also showed that a similar range of enzyme concentrations was found for the protection against high oxygen pressure. This suggests that, in the case of both oxygen and nitrofurantoin toxicity, the peroxide derivatives are the most toxic intermediates of the free radical attacks.  相似文献   

11.
Partial reduction of molecular oxygen produces reactive oxyradicals, including the superoxide anion radical (O - 2 ) and hydroxyl radical (·OH). The gas gland functions under hyperoxic and acidic conditions and therefore is likely to be subjected to enhanced oxidative stress. Aspects of pro- and antioxidant processes in gas gland were compared with other tissues likely to be subject to differing degrees of oxyradical production, viz. liver (site of chemically-mediated oxyradical production), gills and skeletal muscle. Antioxidant enzyme activities (superoxide dismutase, catalase, selenium-dependent and total glutathione peroxidase) per g wet weight were highest in liver and lowest in muscle. Catalase and glutathione peroxidase activies per g wet weight were higher in gills than in gas gland, whereas the reverse was seen for superoxide dismutase. Cytosolic superoxide dismutase activities per mg protein were two- and nine-fold higher in gas gland than in liver and gills. The pH characteristics of the antioxidant enzymes were generally similar in all the tissues. Glutathione, vitamin E and unsaturated (peroxidizable) lipid levels were generally highest in liver followed by gas gland. Lipid peroxidation (malonaldehyde equivalents) was evident in all tissues except gas gland. Hydrogen peroxide and O - 2 were involved in the NAD(P)H-dependent ferric/EDTA-mediated formation of ·OH (as measured by 2-keto-4-methiolbutyrate oxidation) by mitochondrial and postmitochondrial fractions of gas gland. Tissue maximal potentials for ·OH production paralled superoxide dismutase but not catalase or glutathione peroxidase activities. Overall, the results confirm the presence of effective antioxidant defences in gas gland and support previous workers' contentions of a central role for superoxide dismutase in this process.Abbreviations EDTA di-sodium ethylenediaminetetra-acetic acid - G-6-P glucose-6-phosphate - GPX total glutathione peroxidase - GSH reduced glutathione - GSSG oxidised glutathione - GST glutathion-S-transferase - HPLC high performance liquid chromatography - KMBA 2-keto-4-methiolbutyric acid - MOPS 3-[N-morpholino] propane-sulphonic acid - PMS postmitochondrial supernatant - Se-GPX selenium-dependent glutathion peroxidase - SOD superoxide dismutase - TCA trichloroacetic acid  相似文献   

12.
A. R. McEuen  H. A. O. Hill 《Planta》1982,154(4):295-297
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase  相似文献   

13.
NAD(P)H is rapidly oxidized in the presence of peroxidase, a substituted monophenol such as p-coumaric acid, and Mn2+ ions. As recently reported by Miller (1985), this NAD(P)H oxidation at the expense of molecular oxygen is inhibited by submicromolar concentrations of Cu2+ ions. This inhibition by cupric ions is counteracted by micromolar concentrations of cytokinins. We now show that NAD(P)H-oxidation by the above system is under the control of superoxide dismutase, where in the absence of cytokinin-copper, superoxide dismutase stimulates NAD(P)H-oxidation. In the presence of unribosylated cytokinins and copper, however, superoxide dismutase acts as an inhibitor. Thus cytokinins and superoxide dismutase may interact in the control of the redox state of plant cells.  相似文献   

14.
Duckweed Lemna minor L. was grown on Wang culture medium supplemented with lead ions for 24 hours. Metal was tested at 1.5, 3 and 6 mg·dm−3 concentrations. The growth of Lemna minor was inhibited by lead ions, but the dry to fresh weight ratio increased as the concentration of Pb2+ in the medium increased. With increased concentrations of Pb ions, the contents of chlorophyll a and chlorophyll b in roots and fronds were correspondingly lower in comparision with the control. The effect of lead upon activities of some glycolitic and fermentative enzymes in roots of duckweed was examined. The activity of pyruvate kinase decreased with increasing lead concentrations, but cytosolic malate dehydrogenase behaved in an opposite manner. The lowest concentration of Pb stimulated alcohol dehydrogenase; phosphoenolopyruvate carboxylase activity was maintained at relatively constant values at all tested lead concentrations.  相似文献   

15.
Superoxide dismutase activity was demonstrated for 6 strains of 3 propionibacteria species. Rather high level of superoxide dismutase activity found in propionibacteria was in accordance with high level of catalase activity reported for propionibacteria previously. Both these activities were shown to have cytozolic localization. For the first time peroxidase activity was detected in gel-fractionated crude cell extracts of propionibacteria. The ability to produce superoxide radicals in NADH-dependent oxidation system was revealed for three strains of the bacteria. The level of superoxide production by the membrane particles of the propionic acid bacteria correlated with the levels of superoxide dismutase and catalase activities and was the lowest for Propionibacterium shermanii. The ability to perform monovalent oxygen reduction during succinate oxidation was not revealed. The intact cells of P. globosum, P. vannielii, P. shermanii apparently did not excrete superoxide radicals into culture fluid during respiration.  相似文献   

16.
Nitric oxide (NO) is a bioactive molecule, which in plants was found to function as prooxidant as well as antioxidant. In the present study, we found that NO donor sodium nitroprusside (SNP) stimulates seed germination and root growth of lupin (Lupinus luteus L. cv. Ventus). Seed germination is promoted at concentrations between 0.1 and 800 μM SNP in a dose-dependent manner. The stimulation was most pronounced after 18 and 24 h and ceased after 48 h of imbibition. The promoting effect of NO on seed germination persisted even in the presence of heavy metals (Pb, Cd) and sodium chloride. Pretreatment of lupin seedlings for 24 h with 10 μM SNP resulted in efficient reduction of the detrimental effect of the abiotic stressors on root growth and morphology. The inhibitory effect of heavy metals on root growth was accompanied by increased activity of superoxide dismutase (SOD, EC 1.15.1.1.), which in roots preincubated with SNP was significantly higher. Some changes in the activity of other antioxidant enzymes, peroxidase (POX, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) were also detected. Using the superoxide anion (O2•–)-specific indicator dihydroethidium (DHE), we found intense DHE-derived fluorescence in heavy metal-stressed roots, whereas in those pretreated with SNP the fluorescence was very low, comparable to the level in unstressed roots. On the basis of the above data, we conclude that the protective effect of NO in stressed lupin roots may be at least partly due to the stimulation of SOD activity and/or direct scavenging of the superoxide anion.  相似文献   

17.
In the present study, the impact of potassium phosphite on response of cucumber plants inoculated with Pythium ultimum var. ultimum was assessed. Variations in the accumulation of both antioxidant enzymes and growth parameters were investigated. The results revealed that fresh and dry weights of shoot and root exhibited up to 2 fold increase in potassium phosphite-treated plants. The concentrations of peroxidase, superoxide dismutase and catalase were significantly higher in the plants treated with 4 g L?1 of potassium phosphite compared to other treatments, at 48 h after inoculation. It was demonstrated that both 2 and 4 g L?1 treatments could alleviate the disease damage to a high extent, while control plants were severely damaged by the pathogen. The results of this study suggest that the increased induction of antioxidant enzymes (2.2, 2.8 and 4 fold increase for superoxide dismutase, catalase and peroxidase, respectively) might have alleviated damping-off symptoms leading to increased plant growth and yield.  相似文献   

18.
Cd~(2+)胁迫对小桐子幼苗叶片抗氧化系统的影响   总被引:1,自引:0,他引:1  
以小桐子幼苗为材料,设置不同浓度CdCl_2处理,测定Cd~(2+)胁迫对小桐子幼苗叶片中可溶性蛋白、丙二醛(MDA)含量,以及5种抗氧化酶活性和2种抗氧化剂含量的变化,探讨镉胁迫对小桐子幼苗抗氧化系统的影响。结果表明:(1)Cd~(2+)胁迫导致小桐子幼苗叶片中可溶性蛋白含量降低、MDA含量增加;(2)随着镉胁迫时间的延长,幼苗叶片中愈创木酚过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、抗坏血酸专一性过氧化酶(APX)、谷胱甘肽还原酶(GR)等抗氧化酶活性表现出先升高然后降低的变化趋势;(3)幼苗叶片中还原型抗坏血酸(ASA)和还原型谷胱甘肽(GSH)含量随着胁迫时间延长而降低,但其中氧化型抗坏血酸(DHA)和氧化型谷胱甘肽(GSSG)含量则升高。研究表明,镉胁迫初期能诱导小桐子幼苗抗氧化系统活性显著增强,提高其抗氧化能力,但随着胁迫时间的延长,致使其抗氧化酶的活性和抗氧物质含量下降,植株遭受明显氧化胁迫,幼苗生长受到镉的严重毒害。  相似文献   

19.
Here we present studies on the antioxidant status of a semi-natural grassland community, permanently growing in mini-FACE rings under elevated concentrations of atmospheric CO2 (560 μmol mol−1). In general, in leaves of Dactylis glomerata L. and Trifolium repens L., no differences between ambient and elevated CO2 were detected as concerns protein content, activity of oxidant-scavenging enzymes (catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase), and lipid peroxidation. The activity of antioxidant-regenerating enzymes (monodehydroascorbate reductase, dehydroascorbate reductase and glutathione disulfide reductase) and the content of antioxidants (ascorbic acid, dehydroascorbic acid, reduced glutathione and glutathione disulfide) showed remarkable variability between leaves from plants grown in ambient and CO2-enriched mini-FACE rings. Thus, in general it can be concluded that the effects of elevated CO2 at environmentally relevant concentrations on the leaf antioxidant status of a grassland community are extremely variable, species-specific and rather limited.  相似文献   

20.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号