首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

2.
Mountains harbor rich biodiversity and high levels of endemism, particularly due to changes in environmental conditions over short spatial distances, which affects species distribution and composition. Studies on mountain ecosystems are increasingly needed, as mountains are highly threatened despite providing ecosystem services, such as water supply for half of the human population. We aimed to understand the patterns and drivers of alpha and beta diversities of aquatic invertebrates in headwater streams along an altitudinal gradient in the second largest South American mountain range, the Espinhaço mountains. Headwater streams were selected at each 100 m of elevation along an altitudinal gradient ranging from 800 to 1400 m asl, where three substrate types per stream were sampled: leaf litter, gravel, and cobbles. Environmental variables were sampled to represent local riparian canopy cover, instream physical habitat, water quality, climatic data, and land use. Generalized linear models and mixed models were used to test relationships between altitude and the richness and abundance of invertebrates and to assess the influence of environmental variables on the same metrics. Patterns of spatial variation in aquatic invertebrate assemblages along the altitudinal gradient were assessed using multiplicative beta diversity partitioning. The richness and abundance of aquatic invertebrates decreased with increasing altitude, whereas beta diversity increased with increasing altitude. Significant differences in assemblage composition and in relative abundance of invertebrates were observed for both substrates and altitude. We thus show that the high regional beta diversity in aquatic ecosystems in the studied site is due to the high turnover among areas. Abstract in Portuguese is available with online material.  相似文献   

3.
Riffle beetle community structure is influenced by the preservation condition of stream riparian vegetation. Though, the width of riparian vegetation required to ensure conservation of stream insect communities is still controversial. Effects of alterations in riparian vegetation widths on stream insect community structure can be overcame by other environmental variables, like substrate type, hindering accurate assessments. We tested the effects of different riparian vegetation widths (>40, 30–15, 15–5 and <5 m) along with different substrate types (inorganic and organic) on riffle beetle community structure in southern Brazilian 4th‐ to 5th‐order streams. Riparian buffer widths and substrate types influenced riffle beetle community structure, but no interaction between them was observed. Reduced riparian vegetation widths downstream were associated with changes in riffle beetle dominant genera (Macrelmis predominated only in streams with narrowest riparian widths). Additionally, communities in organic substrates had lower equitability and different dominant genera (Hexacylloepus and Heterelmis) than inorganic ones. Our results showed that reductions in riparian vegetation were associated with water pollution and changes in riffle beetle community structure, suggesting that buffer strips narrower than 5 m are not adequate to maintain environmental integrity of southern Brazilian streams. These results have special importance for the conservation of stream insects in Brazil, as reductions up to less than 5 m in stream banks of small properties are allowed by the new Brazilian Forest Code, independently of stream order.  相似文献   

4.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

5.
6.
1. Despite non‐point‐source (NPS) pollution being perhaps the most ubiquitous stressor affecting urban streams, there is a lack of research assessing how urban NPS pollution affects stream ecosystems. We used a natural experimental design approach to assess how stream macroinvertebrate community structure, secondary production and trophic structure are influenced by urban NPS pollution in six streams. 2. Differences in macroinvertebrate community structure and secondary production among sites were highly correlated with stream‐water specific conductivity and dissolved inorganic phosphorus (DIP) concentrations. Macroinvertebrate richness, the Shannon diversity index and the Shannon evenness index were all negatively correlated with specific conductivity. These patterns were driven by differences in the richness and production of EPT and other intolerant taxa. Production of the five most productive taxa, tolerant taxa, non‐insect taxa and primary consumers were all positively correlated with stream‐water DIP. 3. Despite the positive correlation between primary consumer production and DIP, there was no correlation between macroinvertebrate predator production and either total or primary consumer macroinvertebrate production. This was observed because DIP was positively correlated with the production of non‐insect macroinvertebrate taxa assumed to be relatively unavailable for macroinvertebrate predator consumption. After removing production of these taxa, we observed a strong positive correlation between macroinvertebrate predator production and production of available prey. 4. Our results suggest that urban NPS pollution not only affects macroinvertebrate community structure, but also alters secondary production and trophic‐level dynamics. Differences in taxon production in our study indicate the potential for altered energy flow through stream food webs and potential effects on subsidies of aquatic insect prey to riparian food webs.  相似文献   

7.
Abstract 1. Current views in ecology emphasise that community structure is the sum of multiple processes, with imprints of both regional and local drivers. However, the degree to which stream insect assemblages are structured by spatial configuration (complying with the dispersal‐based neutral hypothesis) and local environmental features (complying with the niche‐based species sorting hypothesis) has not been rigorously examined based on surveys in multiple years. 2. Stream sites in a boreal drainage system were surveyed during three consecutive years and the relative contribution of spatial configuration and local environmental variables to aquatic insect assemblage structure (characterised by both abundance and presence–absence data) was assessed. Separate analyses were conducted for mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and non‐biting midges (Diptera: Chironomidae) in each year. 3. There were no relationships between the spatial location and local environmental features of streams in Mantel tests, facilitating exploration of their independent effects on assemblage structure. The study found virtually no effects of spatial location on stream insect assemblages across the study drainage system, as evidenced by Mantel tests and canonical correspondence analyses (CCA). The environmental variables were also rather weakly associated with assemblage structure, with the total amount of explained variation ranging from 9.8% to 31.7% in the CCAs. There were no appreciable differences in the amount of environment‐related explained variation in assemblage structure between mayflies, stoneflies, caddisflies, and midges, but some between‐year differences were noticeable in most insect groups. The environmental variables that were significantly related to assemblage structure exhibited some between‐group and between‐year variability. In general, patterns shown by abundance and presence–absence data were highly similar. 4. It appears that stream insect assemblages comply with the niche‐based species sorting hypothesis in the context of metacommunity ecology. In contrast, the absence of spatial structuring suggests that stream insect assemblages do not comply with the neutral hypothesis, being not strongly dispersal limited at the within‐drainage basin scale.  相似文献   

8.
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity.  相似文献   

9.
1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time‐consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well‐preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike’s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall’s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best‐supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.  相似文献   

10.
Habitat modification can homogenize biological communities. Beta diversity analyses provide key information for understanding biotic homogenization, especially given recent conceptual and methodological advances. Here, we investigated if landscape modification was associated with taxonomic homogenization in 32 stream insect communities from the Brazilian Atlantic Forest. We investigated: (1) if the way we defined landscape affected our estimates of beta diversity; (2) to what extent changes in species composition versus relative abundance caused the observed homogenization; and (3) if environmental heterogeneity among modified habitats influenced homogenization. We detected taxonomic homogenization caused by landscape modification only when we used refined landscape categorizations and abundance‐based diversity measures. For forested streams, changes in relative abundance rather than absolute taxonomic composition increased the biological variation. Forested streams were generally more heterogeneous, with a variable set of abundant genera; by contrast, non‐forested streams were more homogeneous, with the same set of genera being more or less abundant. We suggest that landscape modification by agriculture, pasture, and silviculture reduces beta diversity by limiting the colonization of potential species, and, ultimately, causing taxonomic homogenization. Studies investigating biotic homogenization should include multiple dissimilarity measures representing changes in relative species abundance and community composition.  相似文献   

11.
基于11个反映水生昆虫生活史、对外界抵抗力和生理特征的生物学性状,应用目前国际上通用的fourth-corner统计方法,系统研究了浙江省钱塘江中游流域水生昆虫功能多样性对土地利用变化的响应.结果表明: 部分生物学性状对土地利用变化敏感,且其随人类干扰强度的变化所发生的改变与预期吻合,其最大个体长度逐渐下降,呼吸方式从以鳃呼吸为主转变为以表皮呼吸为主,掘穴者数量显著增加.参照点的功能多样性指数(Rao值)显著高于干扰点(P<0.001).说明人类活动引起的土地利用变化导致溪流水质和栖境质量下降,引起群落的变异和对生物性状组成的筛选,最终导致水生昆虫群落功能多样性改变.生物性状及功能多样性是未来评价生态健康的潜在指标.  相似文献   

12.
13.
高山微水体由于面积微小且通过地表径流形成串联结构常常被认为与高山溪流具有类似的生境, 然而由于这两类生境中环境因子与底栖动物多样性存在差异, 它们在生态系统中的作用可能完全不同。滇西北地区是全球生物多样性热点区域之一, 境内高山微水体和高山溪流分布密集, 在区域底栖生物多样性维持方面具有重要的功能, 然而目前对这两类高山淡水生态系统的研究较少。为了比较这两类生境环境因子的异同及其对底栖动物多样性的维持作用, 2015年6月, 作者在云南省怒江州贡山县的高山峡谷内, 对27个高山微水体和同区域分布的1条高山溪流(海拔高差500 m范围)的底栖动物多样性和水环境因子进行了实地调查。结果表明: (1)高山微水体和高山溪流底栖动物群落中优势分类单元种群数量均比较庞大, 而稀有分类单元数量较多且种群较小; (2)两种生境在环境因子、物种多样性、功能多样性和群落结构方面的差异明显, 高山溪流有较高的物种丰富度、物种多样性和功能多样性; (3)高山微水体底栖动物多样性的分布与水环境因子无关, 而高山溪流底栖动物多样性与群落结构的形成受到与流速关联的水环境因子和海拔的影响。因此, 高山微水体与高山溪流不能简单地视为类似的生境类型, 它们对区域底栖动物多样性和生态功能维持可能具有不同的作用。  相似文献   

14.
Contemporary and historical factors influence assemblage structure. The environmental and spatial influences acting on fish organization of rain forest coastal streams in the Atlantic rain forest of Brazil were examined. Fish (and functional traits such as morphology, diet, velocity preference, body size), environmental variables (pH, water conductivity, dissolved oxygen, temperature, stream width, flow, depth, substrate), and altitude were measured from 59 stream reaches. Asymmetric eigenvector maps were used to model the spatial structure considering direction of fish movements. Elevation played an important role—fish abundance, biomass, and richness all decrease with increasing elevation. Fish communities are influenced by both environmental and spatial factors, but downstream movements were shown to be more important in explaining the observed spatial variation than were bidirectional and upstream movements. Spatial factors, as well as environmental variables influenced by the spatial structure, explained most of the variation in fish assemblages. The strong spatial structuring is probably attributable to asymmetric dispersal limitation along the altitudinal profile: Dispersal is likely to be more limiting moving upstream than downstream. These fish assemblages reflect scale-dependent processes: At the stream-reach scale, fish respond to local environmental filters (habitat structure, water chemistry, and food supply), which are in turn influenced by a larger scale, namely the altitudinal gradient expected in steep coastal mountains. Thus, environmental drivers are not independent of spatial factors, and the effects of local factors can be confounded across the altitudinal gradient. These results may have implications for conservation, because downstream reaches are often neglected in management and conservation plans.  相似文献   

15.
A comparative investigation on aquatic insect diversity was conducted in a tropical stream in Southeast Asia (the Dak Pri stream in southern Vietnam; stream orders II–V, two sites per stream order) with a reference temperate stream in Northeast Asia (the Gapyeong stream in central Korea) in March 2001 and April 2000, respectively. The numbers of aquatic insect taxa in Dak Pri stream (268 species, mostly undescribed, 230 genera, 91 families, and 9 orders; 110.5 ± 17.1 species per site) were about twice those in Gapyeong stream (133 species, 98 genera, 51 families, and 8 orders; 60.3 ± 8.5 species per site). Coleoptera, Trichoptera, Ephemeroptera, and Diptera were the major aquatic insect orders with high taxonomic richness, and Coleoptera, Odonata, and Hemiptera contributed to the higher degree of aquatic insect diversity in Dak Pri stream. The species diversity indices of Dak Pri stream (4.37 ± 0.19) were higher than those of Gapyeong stream (3.73 ± 0.42), whereas the dominance indices of Dak Pri stream (0.195 ± 0.046) were lower than those of Gapyeong stream (0.346 ± 0.113). Collector-gatherers were predominant in both streams; shredders were more abundant in Dak Pri stream while scrapers were more abundant in Gapyeong stream. Factors affecting the higher degree of aquatic insect diversity in Dak Pri stream are discussed.  相似文献   

16.
The distribution and the diet of 28 fish species were evaluated, during the dry season, in 12 streams of the Upper Beni watershed (Amazon basin, Bolivia). The 12 streams were of similar size (stream width and water depth) but situated on a gradient of altitude in the Andean and sub‐Andean areas. The environmental conditions in the stream changed in relation to the altitude. As altitude decreased, slope and water velocity also decreased, while temperature, conductivity, pH and the proportion of pools increased. Although the diets of the species were mainly based on two aquatic autochthonous food resources, invertebrates and sediment, species were classified into five trophic guilds: detritivores, algivores, piscivores, invertivores‐omnivores and aquatic specialist invertivores. In all streams invertivores dominated or co‐dominated with detritivores. The trophic structure of the assemblages, however, changed in relation to the environmental gradient. The fish species richness increased and the trophic composition became more diverse at lower altitudes, when slope decreased and temperature increased. At the same time, the relative number of invertivore species decreased, whereas the relative number of detritivore, algivore and piscivore species increased. Decreasing altitude appeared to play a role similar to increasing stream size along the longitudinal gradient. This could be explained by geomorphological and temperature variations that may generate environmental conditions favourable to an increase of productivity.  相似文献   

17.
We evaluated the effect of environmental factors on the abundance and genera richness of aquatic insects colonizing artificial substrates. We also assessed the relative effects of environmental factors on assemblage variation (beta diversity), and contrasted its magnitude with the variation associated with the spatial position of reaches in a Neotropical stream. Homogeneous and heterogeneous bricks were installed in seven stream reaches and removed after 60d. Substrate type and organic matter showed significant effects on abundance. For observed richness, substrate type was the only important variable. For rarefied richness, no explanatory variable was important. A NMDS ordination of bricks revealed the effect of spatial position and substrate type. A partial Redundancy Analysis (pRDA) indicated that the environmental matrix explained 12.44% of the total variation, while reach position explained 7.41%. We conclude that at local scale (reaches 430–920 m apart), environmental factors, especially substrate heterogeneity, were important in determining the alpha and beta diversities of the insect assemblage in the stream (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
19.
Zoosporic organisms are common inhabitants of aquatic environments; however there are few ecological studies made for Argentinean streams. In this contribution the taxonomic composition of zoosporic organisms from a stream and their abundance, frequency and diversity on cellulosic baits were analyzed. Samples of water and floating organic matter (vegetable debris) were taken at four dates and different environmental variables (temperature, dissolved oxygen and nutrient concentrations) were measured. Twenty-one taxa were recovered with the baiting technique. Physicochemical fluctuations affected the structure of the studied community; in spring the greatest species richness was related to high nutrient levels whereas in winter the greatest abundance and diversity was related to low water temperature, nutrient levels and well oxygenated conditions. aquatic environment,  相似文献   

20.
The study was done in a first order stream in the southern portion of the Brazilian Atlantic Rain Forest. Samples of the aquatic megafauna (amphibians, crustaceans and fishes) were taken with the aim of describing spatial (longitudinal) and temporal (seasonal) patterns in species composition and abundance. Thirty four structural and limnological variables at macro and mesoscales from three sampling reaches were analysed. The spatio-temporal analysis of species richness and diversity indicated a gradient in which values increased in an upstream–downstream direction, independently of the season of the year. The results showed a strong influence of structural environmental variables on community structure. Furthermore, they revealed a hierarchical relation between macroscale and mesoscale variables and their influence on community abundance and composition in the various spatio-temporal sampling units analysed. The spatial distribution of species richness and diversity in the Carvão creek was strongly influenced by the presence of waterfalls, being progressively richer and more diverse downstream. Waterfalls seem to function as selective filters more than as absolute barriers, presenting different efficiencies for different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号