首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Viral-induced interferon inhibition of the primary in vitro plaque-formong cell (PFC) response in the mouse (C57B1/6) involves a dynamic relationship between the nature of the antigen, the concentration of interferon added to antigen-stimulated cultures, and the time of addition of interferon relative to antigen addition. The PFC response to a thymus-dependent antigen (sheep red blood cells) was more easily suppressed by viral-induced interferon than was that to a thymus-independent antigen (E. coli 0127 LPS), both in terms of inhibitory concentrations of interferon and the time at which the interferon could be added to cultures after antigen and still inhibit the PFC response. These differential effects of interferon could be related to the difference in cellular requirements (B and T lymphocytes) of the two antigens. Interferon was effective in inhibiting the in vitro PFC response of antigen-primed spleen cells, indicating that it can block the response of memory lymphocytes. By using interferon inducers as inhibitors of the in vitro PFC response, it was possible to show that at least two antigenically distinct interferons may be involved in suppressing the immune response. It is known that one type of interferon is induced by virus and synthetic double-stranded polyribonucleotides. The other type is stimulated by antigen and T cell mitogens. A model is proposed to explain the nature of these interferon inhibitory effects in terms of mediation of immune suppressor cell effects.  相似文献   

2.
The influence of allogeneic cell interaction and GVH reaction on the immune response to Escherichia coli antigen was investigated. Addition of CBA/J spleen cells to cultures of nu/nu spleen cells stimulated a significant increase in the nude PFC response to SRBC but had no significant effect on the immune response to E. coli antigen. Similarly, the induction of a GVH reaction in F1 mice by the injection of parental spleen cells also had no significant effect on the immune response to the bacterial antigen. These results suggest that the immune response to E. coli is not affected by products of thymus-derived cells.  相似文献   

3.
Polyclonal plaque-forming cell (PFC) responses in murine spleen cells induced by Staphylococcus aureus and S. epidermidis were studied. Injection of Balb/c mice with S. aureus strain 248βH resulted in the generation of anti-trinitrophenyl (TNP) and anti-sheep red blood cell PFC in their spleens. Cultures of Balb/c spleen cells in the presence of S. aureus 248βH, Cowan I, or a protein A-deficient mutant yielded many anti-TNP PFC. The larger the number of organisms that were added to the cultures, the better was the PFC response. Both living and killed organisms, were capable of inducing the response, but an excess of living 248βH organisms in the cultures abrogated the response. All of the organisms (12 strains of S. aureus and 11 strains of S. epidermidis) freshly isolated from patients had the ability to induce the polyclonal PFC response in cell cultures. These organisms stimulated cultured C3H/HeJ mouse spleen cells, which were unresponsive to bacterial lipopolysaccharide (LPS). Cultured cells from the spleens of athymic nu/nu mice also responded to these organisms, and the number of PFC in nu/nu cell cultures was always greater than that in nu/+ cells prepared from a haired litter mate. Moreover, the responses of nu/nu spleen cell cultures to which nylon wool column-filtered splenic nu/+ T cells were added were lower than expected. These findings suggest that the polyclonal PFC response to staphylococci is thymus independent, but that the magnitude of the response is regulated by mature T cells. Cultures of macrophage-depleted spleen cells responded to the organisms to an extent similar to that of the control. The 248βH organisms were less capable of stimulating spleen cells of 2-week-old mice (i.e., early maturing B cells) than LPS. However, spleen cells from adult (7-week-old) and aged (9-month-old) mice responded well to both the organisms and LPS. Previous sensitization with the organisms in vivo did not affect any polyclonal responses of spleen cells in vitro to either the organisms or LPS. The role of staphylococcal protein A in the polyclonal PFC response to staphylococci is discussed.  相似文献   

4.
Streptococcal pyrogenic exotoxin (SPE), a toxic protein, secreted by Group A streptococci modifies antibody responses in two ways. It suppresses the early peak plaque-forming cell (PFC) and serum antibody responses to sheep erythrocytes (SE) and it engenders a late burst of PFC detected at 12–14 days. We have termed the late phase a deregulated response. This effect has been observed in rabbits and NIH (+/+ and +/nu) mice. NIH athymic nude (nu/nu) mice exhibit the early suppressed response but do not show the late phase. In reconstruction experiments to delineate the responsible target site of SPE we have conferred upon the nude or nude spleen cells in vitro, +/nu PFC responsiveness to SE by transfer of +/nu spleen cells in vivo or by supplementation with +/nu spleen cells in Marbrook cultures. When this is done, complementation of nude PFC responses and their ability to exhibit a deregulated response after SPE treatment is conferred coordinately. Pretreatment of donor cells with a B-cell inhibitory dose of X-ray or with a B-cell inhibitory dose of anti-Ig serum + C′ does not inhibit complementation of nude cells to +/nu responsiveness. Moreover, such donor suspensions when treated with SPE retain the ability to complement and to confer upon nude cells the ability to exhibit the late burst of PFC (a deregulated response). A similar pretreatment of the donor cell suspension with an anti-T-cell serum and C′, however, markedly inhibits both the adoptive complementation and the deregulation of the nude mouse PFC response. Thus, it is demonstrated that the target cell affected in this way by SPE is a T-cell. We presume from this evidence that SPE inhibits a T-cell which is involved in the regulation of antibody formation.  相似文献   

5.
Mice homozygous for the nu gene fail to develop a thymus. In comparison to spleen cells from +/nu mice spleen cells from nu/nu mice have a deficient 19S PFC response to SRBC when tested in culture or in vivo. This deficiency is due to a lack of “helper” T cells in nu/nu spleen; A cells and B cells appear to be normal. The capacity of nu/nu spleen cells to produce a PFC response in culture can be corrected by the addition of T cells obtained from either the thymuses or the spleens of +/nu mice. In contrast to “helper” T cells obtained from the spleen, “helper” T cells obtained from the thymus appear to require the capacity for proliferation during the response to SRBC.  相似文献   

6.
Virus-induced (virus-type) interferon suppression of the in vitro antibody response of mouse (C57B1/6) spleen cells to sheep red blood cells was blocked by 5 × 10?5M 2-mercaptoethanol (2-ME). The blockade was not due to a direct effect on interferon since 2-ME was capable of blocking the suppression when added to cultures up to 48 hr after interferon. 2-ME blockade of virus-type interferon immunosuppression was not due to the immunoenhancing property of 2-ME. Similar protective effects of 2-ME were observed during immunosuppression by virus-type interferon inducers, but not T-cell mitogen inducers of interferon (immune interferon). The data suggest that the immunosuppressive properties of virus-type and immune interferon preparations involve different mechanisms. Virus-type interferon inhibited DNA synthesis in unstimulated spleen cell cultures and in 2-ME stimulated cultures, and the degree of inhibition of DNA synthesis appeared to be related to the immunosuppressive property of interferon in the absence or presence of 2-ME. 2-ME did not affect the antiviral properties of either virus-type or immune interferon in nonlymphoid cells. Further, the induction of virustype interferon in spleen cells was neither inhibited nor enhanced by 2-ME, while the induction of immune interferon was enhanced. This enhancement is consistent with 2-ME enhancement of the immunosuppressive effects of immune interferon inducers.There are two possibilities for 2-ME blockade of the immunosuppressive effect of virus-type interferon, while not affecting the antiviral property. Firstly, the immunosuppressive and antiviral properties of virus-type interferon may involve different mechanisms at the subcellular level. Secondly, the selectivity of the blockade by 2-ME could be due to the fact that spleen cells are the target cells in immunosuppression, while L cells are the target cells in inhibition of virus replication. Thus, virus-type interferon may suppress the immune response at the level of the macrophage and 2-ME may reverse this effect by replacing a blocked macrophage function.  相似文献   

7.
Cell viability and the production of direct PFC were studied in mouse spleen cell cultures after cortisol treatment in vivo or in vitro at various times relative to primary stimulation with SRBC in vitro.Cortisol treatment in vivo reduced spleen cell numbers by 88% after 48 hr, but cultures of the remaining cells produced as many PFC in vitro as did cultures of equal numbers of normal spleen cells.In normal spleen cell cultures incubated with cortisol for 4 hr prior to the addition of antigen, peak responses of PFC/culture and PFC/106 cells occurred 24 hr later than in controls and averaged, respectively, 27% and 141% of control values. Minimum viable cell numbers were observed in cortisol-treated cultures after 3 days; thereafter cell numbers gradually increased. These results were not significantly altered when cultures were treated simultaneously with cortisol and antigen.The response was not suppressed if the addition of antigen preceded that of cortisol by more than 4 hr. Suppression was also considerably reduced if fetal calf serum was used when preparing cells for culture.  相似文献   

8.
Enhancement by interferon of natural killer cell activity in mice.   总被引:11,自引:0,他引:11  
Injection of mice with several interferon inducers, Newcastle Disease virus, polyinosinic-polycytidylic acid and tilorone resulted in an increase in spleen cell cytotoxicity for 51chromium-labeled mouse YAC tumor target cells in 4-hr in vitro assays. This increase in spleen cell cytotoxicity was abrogated by injection of mice with potent anti-mouse interferon globulin. Inoculation of mice with mouse interferon (but not human leucocyte or mock interferon preparations) also resulted in a marked enhancement of spleen cell cytotoxicity. The extent of enhancement of spleen cell cytotoxicity was directly proportional to the amount of interferon injected and a significant increase was observed after inoculation of as little as 103 to 104 units of interferon. An effect could be detected as soon as 1 hr after injection of interferon. The increase of spleen cell cytotoxicity after inoculation of an interferon inducer was not due to a localization and accumulation of cytotoxic cells in the spleen but reflected a general increase in cytotoxic cell activity in various lymphoid tissues (except the thymus). The splenic cytotoxic cells from interferon or interferon-inducer-injected mice had the characteristics of natural killer (NK) cells since (i) interferon enhanced spleen cell cytotoxicity in athymic (nu/nu) nude mice, (ii) classical spleen cell fractionation procedures by nylon wool columns, anti-Thy 1.2 serum plus complement, anti-Ig columns, and depletion of FcR+ rosette-forming cells, failed to remove the effector cells generated in vivo or in vitro. Therefore like NK cells, interferon-induced cytotoxic cells lack the surface markers of mature T and B lymphocytes, are not adherent, and are devoid of avid Fc receptors. Furthermore like NK cells, the spleen cells from interferon-treated mice lysed various target cells (known for their sensitivity to NK cells) without H-2 or species restriction. Incubation in vitro of normal spleen cells with interferon also resulted in an increase in cytotoxicity for YAC tumor cells. We conclude that interferon acts directly on NK cells and enhances the inherent cytotoxic activity of these cells.  相似文献   

9.
Utilizing a variety of lymphoid tissues from three common laboratory species, comparative studies were performed to investigate the competence of the dissociated cells to respond to a heterologous erythrocyte with the development of specific plaque-forming cells. Dissociated spleen cells harvested from BDF1 mice consistently developed specific plaque-forming cells (PFC) to sheep red blood cells (SRBC), while hamster spleen cells inconsistently developed specific antibody-forming cells to SRBC. Under identical conditions, guinea pig spleen cells did not develop significant numbers of PFC to SRBC. However, lymph node cell cultures of all three species tested yielded specific PFC. In the mouse and hamster lymph node cell cultures, the yield of PFC per culture or per 106 recovered viable cells was always greater than the yield from companion spleen cell cultures. Guinea pig mesenteric lymph node cell cultures developed the major PFC response to SRBC, while both mesenteric and peripheral lymph node cell cultures from hamsters were equivalent in their response to SRBC. The data demonstrate that it is possible to develop a primary antibody response to SRBC in vitro utilizing normal endogenous hamster or guinea pig lymphoid cells, if lymph nodes are the source of cells.  相似文献   

10.
A soluble factor secreted by alloantigen-activated mouse T cells which binds to the Fc fragment of IgG and inhibits complement activation by IgG (immunoglobulin-binding factor, IBF) suppressed the in vitro 19S and 7S antibody response by mouse spleen cells to T-dependent as well as T-independent antigens. IBF inhibited the 19S plaque response best when it was added late during PFC generation (between 48 and 72 hr). On the other hand, when it was left in cultures for up to 60 hr and then removed, antibody synthesis was not inhibited. However, its presence for only 2 hr starting after 72 hr of incubation was sufficient to inhibit PFC formation. The suppressive activity of IFB could be neutralized by adding aggregated mouse IgG prior to the critical stage around 72 hr. These data favour the view that IBF could be a suppressive T cell factor and point to the possibility that IBF may act on already triggered B cells during their final differentiation to active PFC.  相似文献   

11.
In vitro culture techniques have been used to compare the direct (IgM) plaqueforming cell (PFC) response to heterologous erythrocytes (RBC) by normal mouse spleen cells and spleen cells from mice injected intravenously with 5 × 104 RBC ten days previously [low dose primed (LDP)]. Although LDP mice fail to undergo a significant primary PFC response, their spleen cells are capable of a secondary or enhanced PFC response in vitro. The secondary PFC response is shown to be a function of: (A) an increase in the frequency of immunocompetent cells or units (IU) due to in vivo priming, and (B) an increased number of PFC generated per IU subsequent to in vitro stimulation. The latter increase is shown to be mediated through a shorter PFC doubling-time during logarithmic expansion of the PFC population. Analysis of nonadherent spleen cell dose response experiments indicate that two nonadherent cell types interact in the secondary response. Subsequent cocultivation experiments suggested that both of these cell types must be “primed” to allow induction of a secondary response. Although adherent cells are required for the secondary response, normal splenic adherent cells serve as equivalent substitutes for LDP adherent cells.  相似文献   

12.
The conditions for the in vitro generation of primary and secondary immune responses by rabbit spleen cells to sheep red blood cell (SRBC) antigen have been examined. Spleen cells from many normal and all previously immunized rabbits are capable of producing in vitro plaque-forming cell (PFC) responses when cultured as dissociated cell suspensions in the presence of antigen. Primed spleen cells generate approximately 100 times the number of PFCs obtained in normal cultures with a shorter lag period. Both types of cultures demonstrate a period of exponential increase in PFCs during which the doubling time is 12–14 hr. This increase occurs after 1 day of culture of spleen cells from primed rabbits and after 4 days of culture of spleen cells from unprimed rabbits. The PFCs which arise in cultures of primed cells appear not to be the progeny of those generated in vivo but to be derived from an increased number of PFC precursors. Repeated immunization of the spleen cell donor is required to produce significant numbers of indirect (IgG) PFC or indirect precursors; most of the PFC found after a single immunization in vivo or in vitro are direct (IgM). There is no evidence for conversion of IgM to IgG PFC in vitro. This system should provide a means for further identification of the cellular interactions involved in the immune response of the rabbit.  相似文献   

13.
Human adherent peripheral blood leukocytes spontaneously elaborate both a thymocyte proliferative factor and a factor which augments the in vitro anti-sheep erythrocyte (SRC) plaque-forming cell (PFC) response of nu/nu mouse spleen cells. Nonadherent leukocytes do not spontaneously elaborate either factor. The adherent cell-derived factors appear to have an identical molecular weight (approximately 14,500 Daltons) as determined by Sephadex gel filtration. The data support the hypothesis that the molecule(s) mediating both enhancing activities is identical to the previously described adherent leukocyte product, LAF.  相似文献   

14.
Preparations of Type II immune induced Interferon enhanced the plaque forming cell response of mice to sheep red blood cells both in vivo and in vitro. The enhancement of the antibody response was dependent on the dosage of interferon used and the time of administration of interferon. The expression of the antiviral and immuno-enhancing activities of Type II interferon preparations shared several physical-chemical properties, including pH 2 lability and heat stability. The plaque forming cell response to lipopolysaccharide, a T-independent antigen, could not be enhanced by treatment with Type II interferon. In addition, treatment of spleen cell cultures of nude thymic deficient mice with Type II interferon could not cause an enhancement of the plaque forming cell response to lipopolysaccharide. These data suggest that the immunoenhancing effect of Type II interferon on antibody responses is produced by an effect on T lymphocytes in contrast with the immunosuppressive effect which appears to be mediated through an effect on B lymphocytes.  相似文献   

15.
Spleen cells of CS7BL/6 mice produced considerable amounts of interferon (IF) in vitro when tested 5 to 20 days after injection of killed Corynebacterium parvum. Interferon was also produced when C. parvum was added in vitro to spleen cell cultures of previously untreated mice. High levels were detected after 1 day of culture with some increment during subsequent days. In a number of experiments IF was also produced in untreated control cultures but only after prolonged cultivation and not after 1 day. The highest levels of IF were usually obtained when spleen cells of C. parvum-treated mice were challenged with additional C. parvum in vitro. The IF induced by C. parvum shared certain physicochemical properties with a tested immune IF and was not neutralized by an antiserum raised against a type I IF. Spleen cells of nu/nu mice and spleen cells treated by anti-θ serum plus complement did not differ from their respective controls, indicating that production of IF did not require mature T lymphocytes. Removal of B lymphocytes by nylon wool columns abolished the capacity of spleen cells to produce IF. When spleen cells were freed of adherent cells by the use of plastic surfaces, they no longer produced IF. Peritoneal exudate macrophages (PEC), which by themselves did not produce IF, in small numbers reconstituted nonadherent spleen cells. Nylon column-treated spleen cells, however, could not be restored by PEC. It is concluded that IF upon challenge with C. parvum is produced by B lymphocytes and requires the help of macrophages.  相似文献   

16.
The effect of injection of the synthetic corticosteroid dexamethasone sodium phosphate upon the primary response to Escherichia coli lipopolysaccharide (LPS) was studied in mouse spleen and bone marrow. Daily corticosteroid injections, starting 1 day before immunization with LPS, could suppress the anti-LPS plaque-forming cell (PFC) response in the spleen. The higher the dose of corticosteroids, the more the splenic PFC response was suppressed. On the other hand, the bone marrow PFC response showed a dose-dependent enhancement after corticosteroid injections. This effect was maximal when tested 7 days after antigen injection, and constituted a 3- to 15-fold increase after daily injection of 16 mg dexamethasone/kg body wt. The same effect was found in genetically athymic nude mice, showing that the corticosteroid-mediated enhancement of the anti-LPS PFC response in the bone marrow is not due to elimination of T suppressor cells. Probably the differential effect of corticosteroids upon antibody formation in spleen and bone marrow is due to a redistribution of B-lineage cells, with a resulting accumulation in the bone marrow.  相似文献   

17.
Purified human C-reactive protein (CRP) inhibited the in vitro anti-hapten antibody plaque-forming cells (PFC) response of both carrier keyhole limpet hemocyanin (KLH)-primed and unimmunized Balb/c spleen cells to TNP-KLH. The inhibitory effect was neutralized by the CRP-substrate, C-polysaccharide. The response to the T-independent antigens, TNP-T4 and DNP-lys-Ficoll, was not inhibited by CRP. A cell population that was suppressive for the in vitro PFC response was generated by incubating normal spleen cells with CRP. These cells suppressed the PFC response of syngeneic KLH-primed cells to TNP-KLH in proportion to the number of added lymphoid cells with bound CRP. Selective depletion of B cells, T cells or macrophages before incubation with CRP revealed that T cells were required for the induction of suppressive cells. Treatment of spleen cells after incubation with CRP, with T cell-specific antisera and C abolished suppressor-cell activity. Mitomycin-C treatment of the CRP-binding cells did not alter their suppressive activity. These results indicated that CRP mediates suppression of antibody induction to T-dependent antigens by interacting with T cells and generating a suppressive T-cell population.  相似文献   

18.
The effects of polyclonal B cell activation (PBA) of cell walls and their cell wall fractions obtained from several kinds of gram-positive bacteria were studied using the anti-sheep red blood cell (SRBC) or anti-trinitrophenylated (TNP) SRBC plaque forming cell (PFC) responses of cultured spleen cells from Balb/c, athymic nu/nu, their littermates (nu/+), C3H/He (LPS-responder), C3H/HeJ (LPS-non-responder), (CBA/N × Balb/c) F1 male with an X-linked defect in B cell function and the F1 female mice. The cell walls of Staphylococcus epidermidis (ATCC 155), Lactobacillus plantarum (ATCC 8014), Micrococcus lysodeikticus (NCTC 2665), Mycobacterium rhodochrous (ATCC 184), Streptomyces gardneri (ATCC 23911) and Nocardia corynebacteriodes (ATCC 14898) had the ability to induce polyclonal B cell responses in the spleen cells of Balb/c, nu/nu, nu/+, C3H/He and C3H/HeJ mice. The cell wall fractions prepared by enzymatic digestion from the cell walls of S. epidermidis, S. gardneri or N. corynebacteriodes were also capable of inducing polyclonal B cell responses. The responses of spleen cells from (CBA/N × Balb/c) F1 male mice to these active preparations, except the cell walls of M. rhodochrous, were much lower than those of the F1 female mice. These findings indicate that the majority of the cell wall preparations lacks PBA ability for spleen cells with the CBA/N defect, except for the cell walls of M. rhodochrous which possess this ability. The PBA-ability of synthetic peptidoglycan, muramyl dipeptide (N-acetylmuramyl-L -alanyl-D -isoglutamine, MDP), was also examined, and a similar activity was observed in MDP.  相似文献   

19.
Guinea pig spleen and lymph node cells were found to produce anti-2,4-dinitrophenyl (Dnp) oligolysine PFC in vivo against 2,4-dinitrophenyl-β-alanyl glycyl glycyl (Dagg-SRBC) but not against trinitrophenyl-SRBC target indicator cells. Furthermore, when sensitized spleen cells or their purified B-cell fractions were cocultured with primed peritoneal exudate lymphocytes (PEL) but not splenic T cells they were able to generate a secondary PFC response in vitro to the synthetic antigens, Dnp oligolysines. PFC were not induced in vitro if these same cultures were pulsed with short-chain peptides (five lysines) or the complex antigen, dinitrophenyl-bovine γ-globulin (DnpBGG). Con A was able to substitute for PEL in triggering spleen cells to mount a secondary in vitro PFC response to homologous Dnp oligolysines. More importantly, the Con A-aided spleen cell cultures were not induced above background values when challenged in vitro with heterologous Dnp oligolysines. This study suggests that spleen cells may lack a nonspecific signal for the development of a secondary in vitro PFC response.  相似文献   

20.
The induction of B cell unresponsiveness with hapten-modified syngeneic murine lymphoid cells (hapten-modified self, HMS) can be achieved in vivo and in vitro. Tolerance in vivo in mice required a latent period of 3 to 4 days. Moreover, B cell unresponsiveness could not be induced by HMS in athymic nude mice, although their nu/+ littermates were rendered hyporesponsive by HMS. Pretreatment of normal mice with cyclophosphamide (cyclo) prevented their susceptibility to tolerance induction by haptenated lymphoid cells. Nude mice became sensitive to HMS-induced suppression if they were first reconstituted with spleen cells from normal (but not cyclo-treated) donors.Interestingly, labeling of H-2 antigens was not necessary for tolerance induction by HMS since haptenated teratoma cells (lacking H-2) were tolerogenic in normal recipients.In contrast, suppression of the in vitro response to haptenated flagellin occurred equally well with nude, nu/+ and anti-Ly 2 + C-treated spleen cells. These data suggest that cyclo-sensitive modified self-reactive (T) cells may regulate the immune response and mediate tolerance to HMS in vivo. However, the in vitro “blockade” of B cell reactivity may be directly mediated on hapten-specific PFC precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号