首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsporidia are unusual amongst eukaryotic parasites in that they utilize both vertical and horizontal transmission and vertically transmitted species can cause sex ratio distortion in their host. Here we study vertical transmission in two species of feminising microsporidia, Nosema granulosis and Dictyocoela duebenum, infecting a single population of the crustacean host Gammarus duebeni and measure the effect of temperature on parasite transmission and replication. N. granulosis was vertically transmitted to 82% of the host embryos and D. duebenum was transmitted to 72% of host embryos. For both parasites, we report relatively low parasite burdens in developing host embryos. However, the parasites differ in their pattern of replication and burden within developing embryos. Whilst N. granulosis undergoes replication during host development, the burden of D. duebenum declines, leading us to propose that parasite dosage and feminisation efficiency underlie the different parasite frequencies in the field. We also examine the effect of temperature on parasite transmission and replication. Temperature does not affect the percentage of young that inherit the infection. However, low temperatures inhibit parasite replication relative to host cell division, resulting in a reduction in parasite burden in infected embryos. The reduced parasite burden at low temperatures may underpin reduced feminization at low temperatures and so limit the spread of sex ratio distorters through the host population.  相似文献   

2.
Local adaptation theory predicts that, on average, most parasite species should be locally adapted to their hosts (more suited to hosts from local than distant populations). Local adaptation has been studied for many horizontally transmitted parasites, however, vertically transmitted parasites have received little attention. Here we present the first study of local adaptation in an animal/parasite system where the parasite is vertically transmitted. We investigate local adaptation and patterns of virulence in a crustacean host infected with the vertically transmitted microsporidian Nosema granulosis. Nosema granulosis is vertically transmitted to successive generations of its crustacean host, Gammarus duebeni and infects up to 46% of adult females in natural populations. We investigate local adaptation using artificial horizontal infection of different host populations in the UK. Parasites were artificially inoculated from a donor population into recipient hosts from the sympatric population and into hosts from three allopatric populations in the UK. The parasite was successfully established in hosts from all populations regardless of location, infecting 45% of the recipients. Nosema granulosis was vertically (transovarially) transmitted to 39% of the offspring of artificially infected females. Parasite burden (intensity of infection) in developing embryos differed significantly between host populations and was an order of magnitude higher in the sympatric population, suggesting some degree of host population specificity with the parasite adapted to its local host population. In contrast with natural infections, artificial infection with the parasite resulted in substantial virulence, with reduced host fecundity (24%) and survival (44%) of infected hosts from all the populations regardless of location. We discuss our findings in relation to theories of local adaptation and parasite-host coevolution.  相似文献   

3.
The current consensus is that Microsporidia belong to a select group of parasites capable of causing both intersexuality and complete sex reversal in their hosts. Indeed, species such as Nosema granulosis and Dictyocoela duebenum, which infect amphipod crustaceans, are regularly referred to as 'feminising microsporidians'. This categorisation is based on a combination of findings: that these species are vertically transmitted and occur at a high prevalence of infection in intersex and female amphipods, that infected amphipod populations are female-biased, and that infected females have significantly female-biased broods with no concurrent increase in mortality. In this study, we report on a population of the amphipod Echinogammarus marinus presenting both female bias and high levels of intersexuality, which are infected with D. deubenum. In keeping with its feminising classification, infection is prevalent in animals presenting female and intersex phenotypes. However, a further screen revealed the presence of a previously unknown paramyxean parasite related to organisms of the genus Marteilia, a group known to cause catastrophic sexual dysfunction in bivalves. We found that the paramyxean parasite was also vertically transmitted, with infections being more prevalent in females and intersex animals. Critically, every animal infected with D. deubenum was also co-infected with the paramyxean, with few animals presenting an independent paramyxean infection. In contrast, co-infection of E. marinus with a paramyxean and the non-feminising microsporidian Dictyocoela berillonum rarely occurred. These observations raise a new hypothesis, namely, that D. duebenum and other feminising microsporidians are not actually capable of host feminisation but instead 'hitch-hike' together with a feminising paramyxean parasite.  相似文献   

4.
Parasitism is known to be an important factor in determining the success of biological invasions. Here we examine Crangonyx pseudogracilis, a North American amphipod invasive in the United Kingdom and describe a novel microsporidium, Fibrillanosema crangonycis n.sp., n.g. The primary site of infection is the female gonad and the parasite is transovarially transmitted to the eggs. PCR screening reveals a female bias in the distribution of parasites (96.6% of females, N=29; 22.2% of males, N=27), which is indicative of host sex ratio distortion. The morphological and molecular characterisations of this new microsporidium place it outside all currently established genera. On the basis of these differences, we erect the new genus Fibrillanosema n.g. While F. crangonycis is morphologically identical to uncharacterised microsporidia from populations of North American amphipods, it is distinct from microsporidia found in European populations of amphipods. These data support the hypothesis that vertically transmitted parasites may be selectively retained during invasion events. Furthermore where vertical transmission is combined with host sex ratio distortion these parasites may directly enhance host invasion success through increased rates of population growth.  相似文献   

5.
The amphipod crustacean Gammarus duebeni hosts two species of vertically transmitted microsporidian parasites, Nosema granulosis and Microsporidium sp. A. Here it is demonstrated that these co-occurring parasite species both cause infected females to produce female-biased broods. A survey of European G. duebeni populations demonstrates that these two parasites co-occur in six of 10 populations. These findings contrast with the theoretical prediction that two vertically transmitted feminizing parasites should not coexist in a panmictic population of susceptible hosts at equilibrium. Possible explanations for the co-occurrence of the two feminizing microsporidia in G. duebeni include the recent invasion of a new parasite, horizontal transmission of one or both parasites and the spread of alleles for resistance to the dominant parasite in host populations.  相似文献   

6.
Transmission mode has been suggested to be a strong predictor of virulence. According to theory, the transmission of vector-borne parasites should be less dependent on host mobility than directly transmitted parasites. This could select for increased exploitation of host resources in parasites transmitted by vectors, which may be manifested as higher virulence. Here, we test the prediction that there is an association between transmission mode and the effect on host mobility by comparing parasite infection levels and mobility in willow ptarmigan (Lagopus lagopus L.). We examined the endoparasite infracommunities of individual hosts to obtain annual, quantitative data on four vector-transmitted species (Leucocytozoon lovati, Trypanosoma avium, Haemoproteus mansoni and microfilaria), two directly transmitted species (Trichostrongylus tenuis and Eimeria sp.) and two species with indirect life cycles (Hymenolepis microps and Parionella urogalli). We then used observed variations in freeze-or-flee responses of individual willow ptarmigan to assess whether parasite intensities were related to scored freezing responses. From a field data set covering a period of 9 years from a single area, we found that stronger freezing responses were associated with higher intensities of vector-borne parasites, especially with higher intensities of the haemosporidian L. lovati. Freezing responses were not associated with parasites transmitted in other ways. Thus, high intensities of vector-borne parasites tended to reduce host movements, while parasites with other transmission modes did not.  相似文献   

7.
Competition between parasites within a host can influence the evolution of parasite virulence and host resistance, but few studies examine the effects of unrelated parasites with conflicting transmission strategies infecting the same host. Vertically transmitted (VT) parasites, transmitted from mother to offspring, are in conflict with virulent, horizontally transmitted (HT) parasites, because healthy hosts are necessary to maximize VT parasite fitness. Resolution of the conflict between these parasites should lead to the evolution of one of two strategies: avoidance, or sabotage of HT parasite virulence by the VT parasite. We investigated two co-infecting parasites in the amphipod host, Gammarus roeseli: VT microsporidia have little effect on host fitness, but acanthocephala modify host behaviour, increasing the probability that the amphipod is predated by the acanthocephalan's definitive host. We found evidence for sabotage: the behavioural manipulation induced by the Acanthocephala Polymorphus minutus was weaker in hosts also infected by the microsporidia Dictyocoela sp. (roeselum) compared to hosts infected by P. minutus alone. Such conflicts may explain a significant portion of the variation generally observed in behavioural measures, and since VT parasites are ubiquitous in invertebrates, often passing undetected, conflict via transmission may be of great importance in the study of host-parasite relationships.  相似文献   

8.
Parasites often produce large numbers of offspring within their hosts. High parasite burdens are thought to be important for parasite transmission, but can also lower host fitness. We studied the protozoan Ophryocystis elektroscirrha, a common parasite of monarch butterflies (Danaus plexippus), to quantify the benefits of high parasite burdens for parasite transmission. This parasite is transmitted vertically when females scatter spores onto eggs and host plant leaves during oviposition; spores can also be transmitted between mating adults. Monarch larvae were experimentally infected and emerging adult females were mated and monitored in individual outdoor field cages. We provided females with fresh host plant material daily and quantified their lifespan and lifetime fecundity. Parasite transmission was measured by counting the numbers of parasite spores transferred to eggs and host plant leaves. We also quantified spores transferred from infected females to their mating partners. Infected monarchs had shorter lifespans and lower lifetime fecundity than uninfected monarchs. Among infected females, those with higher parasite loads transmitted more parasite spores to their eggs and to host plant leaves. There was also a trend for females with greater parasite loads to transmit more spores to their mating partners. These results demonstrate that high parasite loads on infected butterflies confer a strong fitness advantage to the parasite by increasing between-host transmission.  相似文献   

9.
Early male-killing (MK) bacteria are vertically transmitted reproductive parasites which kill male offspring that inherit them. Whereas their incidence is well documented, characteristics allowing originally non-MK bacteria to gradually evolve MK ability remain unclear. We show that horizontal transmission is a mechanism enabling vertically transmitted bacteria to evolve fully efficient MK under a wide range of host and parasite characteristics, especially when the efficacy of vertical transmission is high. We also show that an almost 100% vertically transmitted and 100% effective male-killer may evolve from a purely horizontally transmitted non-MK ancestor, and that a 100% efficient male-killer can form a stable coexistence only with a non-MK bacterial strain. Our findings are in line with the empirical evidence on current MK bacteria, explain their high efficacy in killing infected male embryos and their variability within and across insect taxa, and suggest that they may have evolved independently in phylogenetically distinct species.  相似文献   

10.
The habitat and diet choice and the infection (prevalence and abundance) of trophically transmitted parasites were compared in Arctic charr and brown trout living sympatrically in two lakes in northern Norway. Arctic charr were found in all main lake habitats, whereas the brown trout were almost exclusively found in the littoral zone. In both lakes the parasite fauna reflected the niche segregation between trout and charr. Surface insects were most common in the diet of trout, but transmit few parasites, and accordingly the brown trout had a relatively low diversity and abundance of parasites. Parasites transmitted by benthic prey such as Gammarus and insect larva, were common in both salmonid host species. Copepod transmitted parasites were much more common in Arctic charr, as brown trout did not include zooplankton in their diets. Parasite species that may use small fish as transport hosts, were far more abundant in piscivorous fish, especially brown trout. The seasonal dynamics in parasite infection were also consistent with the developments in the diet throughout the year. The study demonstrates that the structure of parasite communities of charr and the trout is highly dependent on shifts in habitat and diet of their hosts both on an annual base and through the ontogeny, in addition to the observed niche segregation between the two salmonid species.  相似文献   

11.
Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.  相似文献   

12.
The dynamics of the protozoan parasite Marteilia refringens was studied in Thau lagoon, an important French shellfish site, for 1 year in three potential hosts: the Mediterranean mussel Mytilus galloprovincialis (Mytiliidae), the grooved carpet shell Ruditapes decussatus (Veneriidae) and the copepod Paracartia grani (Acartiidae). Parasite DNA was detected by PCR in R. decussatus. In situ hybridisation showed necrotic cells of M. refringens in the digestive epithelia of some R. decussatus suggesting the non-involvement of this species in the parasite life cycle. In contrast, the detection of M. refringens in mussels using PCR appeared bimodal with two peaks in spring and autumn. Histological observations of PCR-positive mussels revealed the presence of different parasite stages including mature sporangia in spring and autumn. These results suggest that the parasite has two cycles per year in the Thau lagoon and that mussels release parasites into the water column during these two periods. Moreover, PCR detection of the parasite in the copepodid stages of P. grani between June and November supports the hypothesis of the transmission of the parasite from mussels to copepods and conversely. In situ hybridisation performed on copepodites showed labeling in some sections. Unusual M. refringens cells were observed in the digestive tract and the gonad from the third copepodid stage, suggesting that the parasite could infect a copepod by ingestion and be released through the gonad. This hypothesis is supported by the PCR detection of parasite DNA in copepod eggs from PCR-positive females, which suggests that eggs could contribute to the parasite spreading in the water and could allow overwintering of M. refringens. Finally, in order to understand the interactions between mussels and copepods, mussel retention efficiency (number of copepods retained by a mussel) was measured for all P. grani developmental stages. Results showed that all copepod stages could contribute to the transmission of the parasite, especially eggs and nauplii which were retained by up to 90%.  相似文献   

13.
We investigated whether sexual segregation might affect parasite transmission and host dynamics, hypothesising that if males are the more heavily infected sex and more responsible for the transmission of parasite infections, female avoidance of males and the space they occupy could reduce infection rates. A mathematical model, simulating the interaction between abomasal parasites and a hypothetical alpine ibex (Capraibex) host population composed of its two sexes, was developed to predict the effect of different degrees of sexual segregation on parasite intensity and on host abundance. The results showed that when females tended to be segregated from males, and males were distributed randomly across space, the impact of parasites was the lowest, resulting in the highest host abundance, with each sex having the lowest parasite intensity. The predicted condition that minimises the impact of parasites in our model was the one closest to that observed in nature where females actively seek out the more segregated sites while males are less selective in their ranging behaviour. The overlapping of field observation with the predicted optimal strategy lends support to our idea that there might be a connection between parasite transmission and sexual segregation. Our simulations provide the biological boundaries of host-parasite interaction needed to determine a parasite-mediated effect on sexual segregation and a formalised null hypothesis against which to test future field experiments.  相似文献   

14.
For many parasites, especially those that obligately kill the host for transmission, host age is crucially important to determine success. Here, we have experimentally investigated this relationship with the microsporidian parasite, Nosema whitei, in its host, the Red Flour Beetle, Tribolium castaneum. We find that infection is only possible in young larvae and that spore load at the time of transmission (i.e., host death) correlates with host body size. The data suggested that an infection by N. whitei prolongs the life span of the infected larva and prevents them from pupation. Together, virulence to the host and success for the parasite is mainly determined by the host age at infection. The patterns are consistent with theoretical predictions for obligate killer parasites.  相似文献   

15.
The intracellular stages of apicomplexan parasites are known to extensively modify their host cells to ensure their own survival. Recently, considerable progress has been made in understanding the molecular details of these parasite-dependent effects for Plasmodium-, Toxoplasma- and Theileria-infected cells. We have begun to understand how Plasmodium liver stage parasites protect their host hepatocytes from apoptosis during parasite development and how they induce an ordered cell death at the end of the liver stage. Toxoplasma parasites are also known to regulate host cell survival pathways and it has been convincingly demonstrated that they block host cell major histocompatibility complex (MHC)-dependent antigen presentation of parasite epitopes to avoid cell-mediated immune responses. Theileria parasites are the masters of host cell modulation because their presence immortalises the infected cell. It is now accepted that multiple pathways are activated to induce Theileria-dependent host cell transformation. Although it is now known that similar host cell pathways are affected by the different parasites, the outcome for the infected cell varies considerably. Improved imaging techniques and new methods to control expression of parasite and host cell proteins will help us to analyse the molecular details of parasite-dependent host cell modifications.  相似文献   

16.
For many parasites with complex life cycles, manipulation of intermediate host phenotypes is often regarded as an adaptation to increase the probability of successful transmission. This phenomenon creates opportunities for either synergistic or conflicting interests between different parasite species sharing the same intermediate host. When more than one manipulative parasite infect the same intermediate host, but differ in their definitive host, selection should favour the establishment of a negative association between these manipulators. Both Polymorphus minutus and Pomphorhynchus laevis exploit the amphipod Gammarus pulex as intermediate host but differ markedly in their final host, a fish for P. laevis and a bird for P. minutus. The pattern of host use by these two conflicting manipulative parasites was studied. Their incidence and intensity of infection and their distribution among G. pulex were first examined by analysing three large samples of gammarids collected from the river Tille, Eastern France. Both parasites had low prevalence in the host population. However, temporal fluctuation in the level of parasitic infection was observed. Overall, prevalence of both parasite species was higher in male than in female G. pulex. We then assessed the degree of association between the two parasites among their intermediate hosts, using two different methods: a host-centred measure and a parasite-centred measure. Both measures gave similar results; showing random association between the two acanthocephalan species in their intermediate hosts. We discuss our results in relation to the selective forces and ecological constraints that may determine the pattern of association between conflicting manipulative parasites.  相似文献   

17.
近几年来,利用颗粒体病毒防治菜粉蝶(Pieris rapae以下称菜青虫)幼虫的工作,在我国已取得了较好的进展(梁东瑞等,1979;河北省菜青虫颗粒体病毒研究协作组,1981)。病毒杀虫剂与化学杀虫剂的显著区别之一,是前者具有选择性,不直接杀伤天敌昆虫。为了明确颗粒体病毒防治菜青虫对寄生蜂种群的影响,以便进一步了解病毒治虫在保持生态平衡上的意义,我们对颗粒体病毒、微红绒茧蜂(Apanteles rubecula)、菜青虫的相互关系作了一些实验室研究,现报道初步结果如后。  相似文献   

18.
A. Kelly  A. M. Dunn  M. J. Hatcher 《Oikos》2001,94(3):392-402
We investigate the population dynamics of a vertically transmitted, parasitic sex ratio distorter ( Nosema granulosis ) and its amphipod host ( Gammarus duebeni ), using field measurements to quantify and test alternative theoretical models of the interaction. We measure parasite, host population and transmission parameters at four locations on the Isle of Cumbrae, Scotland at monthly intervals for two years. We develop a simple infinite population model and test its predictions for parasite prevalence using field measurements of the parameters. Parasite prevalence is maintained at relatively low levels at all four sites (20–42%), consistently below that predicted. The parasite imposes a slight fitness cost on its host by reducing female fecundity, but this cost cannot account for the relatively low prevalences observed. We also investigate the importance of population structure, comparing parasite prevalence across sites and sampling intervals to look for evidence of spatial and temporal asynchrony as predicted by metapopulation models. We find significant temporal and spatial heterogeneity in parasite prevalence although there was also evidence that parasite dynamics were synchronous across sites. These data suggest that the parasite is unlikely to drive local population dynamics through cycles of extinction and recolonization at the scale measured. As the host (adult) population sex ratio was male-biased, local population crashes are unlikely to be induced by the parasite, contrary to theoretical predictions.  相似文献   

19.
Parasite virulence is a leading theme in evolutionary biology. Modeling the course of virulence evolution holds the promise of providing practical insights into the management of infectious diseases and the implementation of vaccination strategies. A key element of virulence modeling is a tradeoff between parasite transmission rate and host lifespan. This assumption is crucial for predicting the level of optimal virulence. Here, I test this assumption using the water flea Daphnia magna and its castrating and obligate‐killing bacterium Pasteuria ramosa. I found that the virulence–transmission relationship holds under diverse epidemiological and ecological conditions. In particular, parasite genotype, absolute and relative parasite dose, and within‐host competition in multiple infections did not significantly affect the observed trend. Interestingly, the relationship between virulence and parasite transmission in this system is best explained by a model that includes a cubic term. Under this relationship, parasite transmission initially peaks and saturates at an intermediate level of virulence, but then it further increases as virulence decreases, surpassing the previous peak. My findings also highlight the problem of using parasite‐induced host mortality as a “one‐size‐fits‐all” measure of virulence for horizontally transmitted parasites, without considering the onset and duration of parasite transmission as well as other equally virulent effects of parasites (e.g., host castration). Therefore, mathematical models may be required to predict whether these particular characteristics of horizontally transmitted parasites can direct virulence evolution into directions not envisaged by existing models.  相似文献   

20.
We investigate host-pathogen dynamics and conditions for coexistence in two models incorporating frequency-dependent horizontal transmission in conjunction with vertical transmission. The first model combines frequency-dependent and uniparental vertical transmission, while the second addresses parasites transmitted vertically via both parents. For the first model, we ask how the addition of vertical transmission changes the coexistence criteria for parasites transmitted by a frequency-dependent horizontal route, and show that vertical transmission significantly broadens the conditions for parasite invasion. Host-parasite coexistence is further affected by the form of density-dependent host regulation. Numerical analyses demonstrate that within a host population, a parasite strain with horizontal frequency-dependent transmission can be driven to extinction by a parasite strain that is additionally transmitted vertically for a wide range of parameters. Although models of asexual host populations predict that vertical transmission alone cannot maintain a parasite over time, analysis of our second model shows that vertical transmission via both male and female parents can maintain a parasite at a stable equilibrium. These results correspond with the frequent co-occurrence of vertical with sexual transmission in nature and suggest that these transmission modes can lead to host-pathogen coexistence for a wide range of systems involving hosts with high reproductive rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号