首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Metformin acts as an energy regulator by activating 5'-adenosine monophosphate-activated protein kinase (AMPK), which is a key player in the regulation of energy homeostasis, but it is uncertain whether AMPK is its direct target. This study aims to investigate the possible interaction between metformin and AMPK. First, we verified that metformin can promote AMPK activation and induce ACC inactivation in human HepG2 cells using western blot. Then we predicted that metformin may interact with the γ subunit of AMPK by molecular docking analysis. The fluorescence spectrum and ForteBio assays indicated that metformin has a stronger binding ability to the γ subunit of AMPK than to α subunit. In addition, interaction of metformin with γ-AMPK resulted in a decrease in the α-helicity determined by CD spectra, but relatively little change was seen with α-AMPK. These results demonstrate that metformin may interact with AMPK through binding to the γ subunit.  相似文献   

2.
Since, linking of ovine luteinizing hormone (oLH) to ribosome inactivating protein gelonin (in oLH-gelonin conjugate) occur via the alpha-subunit, oLH, an attempt has been made to develop a universal hormonotoxin for selective targeting to specific cells in the gonads. Four different molar ratios of oLH and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) were used to activate the epsilon amino (-NH2) groups of oLH. The oLH-SPDP derivatives recombine to native beta subunit of oLH (oLH) and the purified recombinants retained substantial receptor binding, steroidogenic activity and immunoreactivity to native oLH. The disulfide linked oLH-S-S-gelonin conjugates prepared by SPDP method were purified by gel filtration chromatography and analysed by reverse-phase high performance liquid chromatography (RP-HPLC). In order to obtain specificity and bioeffectivity, the oLH-S-S-gelonin conjugates were allowed to recombine to native oLH and the recombination mixture was further purified by gel-filtration chromatography. The RP-HPLC analysis of these recombinants indicated that oLH-S-S-gelonin did not recombine to oLH. The failure of recombination may be due to the reasons. (i) The site of -NH2 activation by SPDP may be different in the oLH than the native oLH. (ii) The activation site may be in close proximity to the annealing site which facilitates the recombination of -subunit but failured to reassociate to oLH-S-S-gelonin conjugate. (iii) The introduction of gelonin (30 kDa basic protein) might have induced some steric hinderence for oLH to recombine to the oLH site which might have been masked in oLH-S-S-gelonin conjugates. (Mol Cell Biochem120: 95–102, 1993)Abbreviations oLH ovine Luteinizing Hormone - oLH alpha subunit of oLH - oLH beta subunit of oLH - BSA Bovine Serum Albumin - DTT Dithiothreitol - RP-HPLC Reverse Phase High Performance Liquid Chromatography - TSH Thyroid Stimulating Hormone - FSH Follicle Stimulating Hormone - LH Luteinizing Hormone - eCG equine Chorionic Gonadotropin - DMEM Dulbecco's Modified Eagles Medium - HEPES 4-(2-Hydroxyethyl)-1 Piperazine Ethane Sulfonic acid - PAP Pokeweed Antiviral Protein - RIA Radioimmunoassay - hCG human Chorionic Gonadotropin - TRH Thyrotropin Releasing Hormone - CRF Corticotropin Releasing Factor - hPL human Placental Lactogen - TFA Trifluroacetic Acid - oLH-SPDP SPDP activated derivative of oLH  相似文献   

3.
Circular dichroism spectra have been measured for the binding subunit of cholera toxin in water and in the presence of dodecyl sulfate. In water the protein has an appreciable amount of β structure and almost no α helix. In the presence of dodecyl sulfate the spectrum undergoes drastic change over a time period of approximately four hours, and at equilibrium resembles that expected for a chain with an appreciable amount of α helix but no β structure. The change in helicity is in good agreement with that expected from our formulation of the configuration partition function for the binding subunit. The conformational change may have an important relationship to the means by which the binding subunit permits penetration of the active subunit into the cell.  相似文献   

4.
The cloning, sequencing and functional expression of Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor (nAChR) subunit is described. This subunit shows 80% identity with the Drosophila melanogaster Dβ1 and 92% identity with the Locusta migratoria β1, non-α subunits but only 38% identity to Sgα1 (also referred to as αL1), a previously cloned S. gregaria nAChR α-subunit. When expressed in Xenopus laevis oocytes, Sgβ1 does not respond to nicotine. Responses to nicotine are observed, however, in oocytes co-expressing Sgα1 and Sgβ1, but the pharmacology is indistinguishable from that of currents produced by expressing Sgα1 alone. We conclude that either Sgβ1 does not co-assemble with Sgα1, or that it is unable to contribute to the functional properties of the receptor, in the Xenopus oocyte expression system.  相似文献   

5.
6.
7.
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut.

Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities.  相似文献   


8.
In acetohydroxy acid synthase from Streptomyces cinnamonensis mutants affected in valine regulation, the impact of mutations on interactions between the catalytic and the regulatory subunits was examined using yeast two-hybrid system. Mutations in the catalytic and the regulatory subunits were projected into homology models of the respective proteins. Two changes in the catalytic subunit, E139A (α domain) and ΔQ217 (β domain), both located on the surface of the catalytic subunit dimer, lowered the interaction with the regulatory subunit. Three consecutive changes in the N-terminal part of the regulatory subunit were examined. Changes G16D and V17D in a loop and adjacent α-helix of ACT domain affected the interaction considerably, indicating that this region might be in contact with the catalytic subunit during allosteric regulation. In contrast, the adjacent mutation L18F did not influence the interaction at all. Thus, L18 might participate in valine binding or conformational change transfer within the regulatory subunits. Shortening of the regulatory subunit to 107 residues reduced the interaction essentially, suggesting that the C-terminal part of the regulatory subunit is also important for the catalytic subunit binding.  相似文献   

9.
Eukaryotic initiation factor 3 (eIF3) is a multi-protein complex and a key participant in the assembly of the translation initiation machinery. In mammals, eIF3 comprises 13 subunits, most of which are characterized by conserved structural domains. The trypanosomatid eIF3 subunits are poorly conserved. Here, we identify 12 subunits that comprise the Leishmania eIF3 complex (LeishIF3a-l) by combining bioinformatics with affinity purification and mass spectrometry analyses. These results highlight the strong association of LeishIF3 with LeishIF1, LeishIF2 and LeishIF5, suggesting the existence of a multi-factor complex. In trypanosomatids, the translation machinery is tightly regulated in the different life stages of these organisms as part of their adaptation and survival in changing environments. We, therefore, addressed the mechanism by which LeishIF3 is recruited to different mRNA cap-binding complexes. A direct interaction was observed in vitro between the fully assembled LeishIF3 complex and recombinant LeishIF4G3, the canonical scaffolding protein of the cap-binding complex in Leishmania promastigotes. We further highlight a novel interaction between the C-terminus of LeishIF3a and LeishIF4E1, the only cap-binding protein that efficiently binds the cap structure under heat shock conditions, anchoring a complex that is deficient of any MIF4G-based scaffolding subunit.  相似文献   

10.
The purpose of this study was to analyse the frequency and type of mutations in the coding region of androgen receptor (AR) and to determine the role of polymorphisms in the intron 1 of ERalpha, exon 5 of ERbeta, intron 7 of progesterone, exon 7 of the aromatase (CYP19) and exon 9 of VDR genes in the risk of prostate cancer. PCR-RFLP analysis of all above the genes was on 100 prostate cancer patients and an equal number of matching controls. The study also included PCR-SSCP analyses of exons 2-8 of AR gene. The genotype containing -/- allele of ERalpha gene was statistically significant for the risk of prostate cancer pose (OR, 2.70; 95% CI, 1.08-6.70, P = 0.032) Rr genotype of ERbeta gene also have a higher risk (OR, 1.65; 95% CI, 0.52-5.23) for prostate cancer. The Cys allele of CYP19 gene was also associated with statistically significant increased risk of prostate cancer (OR; 2.28, 95% CI, 1.20-4.35, P = 0.012). tt genotype of codon 352 of VDR gene showed an OR of 0.43 for (95% CI, 0.13-1.39) and an OR for Tt genotype was 0.65 (95% CI, 0.36-1.16). Taken together, the results showed that in North Indian population, ERalpha and CYP19 genes may be playing a role in the risk of prostate cancer.  相似文献   

11.
12.
Cancer is one of the common lifestyle diseases and is considered to be the leading cause of death worldwide. Epstein–Barr virus (EBV)-infected individuals remain asymptomatic; but under certain stress conditions, EBV may lead to the development of cancers such as Burkitt’s and Hodgkin’s lymphoma and nasopharyngeal carcinoma. EBV-associated cancers result in a large number of deaths in Asian and African population, and no effective cure has still been developed. We, therefore, tried to devise a subunit vaccine with the help of immunoinformatic approaches that can be used for the prevention of EBV-associated malignancies. The epitopes were predicted through B-cell, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) from the different oncogenic proteins of EBV. A vaccine was designed by combining the B-cell and T-cell (HTL and CTL) epitopes through linkers, and for the enhancement of immunogenicity, an adjuvant was added at the N-terminal. Further, homology modeling was performed to generate the 3D structure of the designed vaccine. Moreover, molecular docking was performed between the designed vaccine and immune receptor (TLR-3) to determine the interaction between the final vaccine construct and the immune receptor complex. In addition, molecular dynamics was performed to analyze the stable interactions between the ligand final vaccine model and receptor TLR-3 molecule. Lastly, to check the expression of our vaccine construct, we performed in silico cloning. This study needed experimental validation to ensure its effectiveness and potency to control malignancy.  相似文献   

13.
Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6fl/fl;nestin-Cre mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis.  相似文献   

14.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

15.
By using the purified rat liver protein for reference in electrophoresis and peptide mapping experiments, I have identified the beta subunit of mitochondrial F1-ATPase and its cytoplasmic precursor in two-dimensional gel patterns of proteins from S49 mouse lymphoma cells. The beta subunit precursor is a substrate for cAMP-dependent phosphorylation during its synthesis. Normally, both nonphosphorylated and phosphorylated forms of beta subunit precursor are processed rapidly to the smaller, more acidic forms of mature beta subunit. When processing is inhibited with valinomycin, both nonphosphorylated and phosphorylated forms of beta subunit precursor are stabilized. Nonphosphorylated beta subunit is one of the most stable of cellular proteins, but the phosphorylated form is eliminated within minutes of processing. This suggests that phosphorylated beta subunit is recognized as aberrant and excluded from assembly into the ATPase complex. These results argue that cAMP-dependent phosphorylation of the beta subunit precursor is a physiological mistake that is remedied after mitochondrial import and processing.  相似文献   

16.
17.
18.
The subcellular distributions of the precursor form and mature form of γ-glutamyltranspeptidase of rat kidney were studied by labeling the enzyme with [3H] fucose in vivo. In trans Golgi elements and basolateral membranes, γ-glutamyltranspeptidase was present as a precursor form with a single polypeptide chain. However, the brush border membranes contained the heavy and light subunits as well as precursor. These results suggest that the precursor is converted to the mature form after its transport to the brush border membranes.  相似文献   

19.
F1-ATPase is a molecular motor in which the γ subunit rotates inside the α3β3 ring upon adenosine triphosphate (ATP) hydrolysis. Recent works on single-molecule manipulation of F1-ATPase have shown that kinetic parameters such as the on-rate of ATP and the off-rate of adenosine diphosphate (ADP) strongly depend on the rotary angle of the γ subunit (Hirono-Hara et al. 2005; Iko et al. 2009). These findings provide important insight into how individual reaction steps release energy to power F1 and also have implications regarding ATP synthesis and how reaction steps are reversed upon reverse rotation. An important issue regarding the angular dependence of kinetic parameters is that the angular position of a magnetic bead rotation probe could be larger than the actual position of the γ subunit due to the torsional elasticity of the system. In the present study, we assessed the stiffness of two different portions of F1 from thermophilic Bacillus PS3: the internal part of the γ subunit embedded in the α3β3 ring, and the complex of the external part of the γ subunit and the α3β3 ring (and streptavidin and magnetic bead), by comparing rotational fluctuations before and after crosslinkage between the rotor and stator. The torsional stiffnesses of the internal and remaining parts were determined to be around 223 and 73 pNnm/radian, respectively. Based on these values, it was estimated that the actual angular position of the internal part of the γ subunit is one-fourth of the magnetic bead position upon stalling using an external magnetic field. The estimated elasticity also partially explains the accommodation of the intrinsic step size mismatch between Fo and F1-ATPase.  相似文献   

20.
Summary The dimeric enzyme,-Glycerophosphate dehydrogenase, was purified from eight Drosophila species by the method of Collier et al. (1976). The enzymes were inactivated at high pH and the conditions sufficient for reactivation were established. Electrophoretic patterns of reactivated-glycerophosphate dehydrogenases which were mixed following inactivation of two species' enzymes, demonstrate that high pH dissociates the enzyme into its constituent subunits and reactivation involves subunit reassociation. Twenty interspecific combinations of dissociated enzymes were allowed to reassociate, and the amounts of both heterospecific and homospecific enzyme activity and protein were determined by densitometry. In all 20 tests there were no differences between observed and expected heterospecific:homospecific enzyme ratios. These results are consistent with the very slow rate of evolution of this enzyme in the family Drosophilidae (Collier and MacIntyre, 1977).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号