首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forests play a critical role in the global carbon cycle, being considered an important and continuing carbon sink. However, the response of carbon sequestration in forests to global climate change remains a major uncertainty, with a particularly poor understanding of the origins and environmental responses of soil CO2 efflux. For example, despite their large biomass, the contribution of ectomycorrhizal (EM) fungi to forest soil CO2 efflux and responses to changes in environmental drivers has, to date, not been quantified in the field. Their activity is often simplistically included in the ‘autotrophic’ root respiration term. We set up a multiplexed continuous soil respiration measurement system in a young Lodgepole pine forest, using a mycorrhizal mesh collar design, to monitor the three main soil CO2 efflux components: root, extraradical mycorrhizal hyphal, and soil heterotrophic respiration. Mycorrhizal hyphal respiration increased during the first month after collar insertion and thereafter remained remarkably stable. During autumn the soil CO2 flux components could be divided into ∼60% soil heterotrophic, ∼25% EM hyphal, and ∼15% root fluxes. Thus the extraradical EM mycelium can contribute substantially more to soil CO2 flux than do roots. While EM hyphal respiration responded strongly to reductions in soil moisture and appeared to be highly dependent on assimilate supply, it did not responded directly to changes in soil temperature. It was mainly the soil heterotrophic flux component that caused the commonly observed exponential relationship with temperature. Our results strongly suggest that accurate modelling of soil respiration, particularly in forest ecosystems, needs to explicitly consider the mycorrhizal mycelium and its dynamic response to specific environmental factors. Moreover, we propose that in forest ecosystems the mycorrhizal CO2 flux component represents an overflow ‘CO2 tap’ through which surplus plant carbon may be returned directly to the atmosphere, thus limiting expected carbon sequestration from trees under elevated CO2.  相似文献   

2.
Summary Studies examined net photosynthesis (Pn) and dry matter production of mycorrhizal and nonmycorrhizalPinus taeda at 6 intervals over a 10-month period. Pn rates of mycorrhizal plants were consistently greater than nonmycorrhizal plants, and at 10 months were 2.1-fold greater. Partitioning of current photosynthate was examined by pulse-labelling with14CO2 at each of the six time intervals. Mycorrhizal plants assimilated more14CO2, allocated a greater percentage of assimilated14C to the root systems, and lost a greater percentage of14C by root respiration than did nonmycorrhizal plants. At 10 months, the quantity of14CO2 respired by roots per unit root weight was 3.6-fold greater by mycorrhizal than nonmycorrhizal plants. Although the stimulation of photosynthesis and translocation of current photosynthate to the root system by mycorrhiza formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.Further studies examined Pn and dry matter production ofPinus contorta in response to various combinations of N fertilization (3, 62, 248 ppm), irradiance and mycorrhizal fungi inoculation. At 16 weeks of age, 6 weeks following inoculation with eitherPisolithus tinctorius orSuillus granulatus, Pn rates and biomass were significantly greater in mycorrhizal than nonmycorrhizal plants. Mycorrhizal plants had significantly greater foliar %P, but not %N, than did nonmycorrhizal plants. Fertilization with 62 ppm N resulted in greater mycorrhiza formation than either 3 or 248 ppm. Increased irradiance resulted in increased mycorrhiza formation.  相似文献   

3.
Moisture retention properties of a mycorrhizal soil   总被引:1,自引:0,他引:1  
The water relations of arbuscular mycorrhizal plants have been compared often, but virtually nothing is known about the comparative water relations of mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis typically affects soil structure, and soil structure affects water retention properties; therefore, it seems likely that mycorrhizal symbiosis may affect soil water relations. We examined the water retention properties of a Sequatchie fine sandy loam subjected to three treatments: seven months of root growth by (1) nonmycorrhizal Vigna unguiculata given low phosphorus fertilization, (2) nonmycorrhizal Vigna unguiculata given high phosphorus fertilization, (3) Vigna unguiculata colonized by Glomus intraradices and given low phosphorus fertilization. Mycorrhization of soil had a slight but significant effect on the soil moisture characteristic curve. Once soil matric potential (m) began to decline, changes in m per unit change in soil water content were smaller in mycorrhizal than in the two nonmycorrhizal soils. Within the range of about –1 to –5 MPa, the mycorrhizal soil had to dry more than the nonmycorrhizal soils to reach the same m. Soil characteristic curves of nonmycorrhizal soils were similar, whether they contained roots of plants fed high or low phosphorus. The mycorrhizal soil had significantly more water stable aggregates and substantially higher extraradical hyphal densities than the nonmycorrhizal soils. Importantly, we were able to factor out the possibly confounding influence of differential root growth among mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis affected the soil moisture characteristic and soil structure, even though root mass, root length, root surface area and root volume densities were similar in mycorrhizal and nonmycorrhizal soils.  相似文献   

4.
Limitations in available techniques to separate autotrophic (root) and soil heterotrophic respiration have hampered the understanding of forest C cycling. The former is here defined as respiration by roots, their associated mycorrhizal fungi and other micro‐organisms in the rhizosphere directly dependent on labile C compounds leaked from roots. In order to separate the autotrophic and heterotrophic components of soil respiration, all Scots pine trees in 900 m2 plots were girdled to instantaneously terminate the supply of current photosynthates from the tree canopy to roots. Högberg et al. (Nature 411, 789–792, 2001) reported that autotrophic activity contributed up to 56% of total soil respiration during the first summer of this experiment. They also found that mobilization of stored starch (and likely also sugars) in roots after girdling caused an increased apparent heterotrophic respiration on girdled plots. Herein a transient increase in the δ13C of soil CO2 efflux after girdling, thought to be due to decomposition of 13C‐enriched ectomycorrhizal mycelium and root starch and sugar reserves, is reported. In the second year after girdling, when starch reserves of girdled tree roots were exhausted, calculated root respiration increased up to 65% of total soil CO2 efflux. It is suggested that this estimate of its contribution to soil respiration is more precise than the previous based on one year of observation. Heterotrophic respiration declined in response to a 20‐day‐long 6 °C decline in soil temperature during the second summer, whereas root respiration did not decline. This did not support the idea that root respiration should be more sensitive to variations in soil temperature. It is suggested that above‐ground photosynthetic activity and allocation patterns of recent photosynthates to roots should be considered in models of responses of forest C balances to global climate change.  相似文献   

5.
The influence of rhizosphere microorganisms and vesicular-arbuscular (VA) mycorrhiza on manganese (Mn) uptake in maize (Zea mays L. cv. Tau) plants was studied in pot experiments under controlled environmental conditions. The plants were grown for 7 weeks in sterilized calcareous soil in pots having separate compartments for growth of roots and of VA mycorrhizal fungal hyphae. The soil was left either uninoculated (control) or prior to planting was inoculated with rhizosphere microorganisms only (MO-VA) or with rhizosphere microorganisms together with a VA mycorrhizal fungus [Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe] (MO+VA). Mycorrhiza treatment did not affect shoot dry weight, but root dry weight was slightly inhibited in the MO+VA and MO-VA treatments compared with the uninoculated control. Concentrations of Mn in shoots decreased in the order MO-VA > MO+VA > control. In the rhizosphere soil, the total microbial population was higher in mycorrhizal (MO+VA) than nonmycorrhizal (MO-VA) treatments, but the proportion of Mn-reducing microbial populations was fivefold higher in the nonmycorrhizal treatment, suggesting substantial qualitative changes in rhizosphere microbial populations upon root infection with the mycorrhizal fungi. The most important microbial group taking part in the reduction of Mn was fluorescent Pseudomonas. Mycorrhizal treatment decreased not only the number of Mn reducers but also the release of Mn-solubilizing root exudates, which were collected by percolation from maize plants cultivated in plastic tubes filled with gravel quartz sand. Compared with mycorrhizal plants, the root exudates of nonmycorrhizal plants had two fold higher capacity for reduction of Mn. Therefore, changes in both rhizosphere microbial population and root exudation are probably responsible for the lower acquisition of Mn in mycorrhizal plants.  相似文献   

6.
Important effects of elevated [CO2] on SOM are expected as a consequence of increased labile organic substrates derived from plants. The present study tests the hypotheses that, under elevated [CO2]: 1) soil heterotrophic respiration will increase due to roots-microbes-soil interactions; 2) the increased labile C will boost soil heterotrophic respiration, depending on N availability; 3) the temperature sensitivity of soil respiration will change, depending on nitrogen inputs and plant activity. To test these hypotheses, we measured the heterotrophic respiration of intact soil cores collected in a poplar plantation exposed to elevated [CO2] and two nitrogen inputs, at different temperatures. Additional physical (water content, root biomass) and biochemical parameters (microbial biomass, labile C) were determined on the same samples. The soil samples were collected at the POP-EuroFACE experimental site (Italy), where a Populus x euramericana plantation was exposed for 6 years to 550 ppm [CO2] (Free Air CO2 Enrichment) at two different nitrogen inputs (none or 290 kg ha?1). The higher heterotrophic respiration under elevated [CO2] (+30% on average) was driven by the larger pool of soil labile C (+57% on average). The temperature sensitivity of soil respiration was unaffected by elevated [CO2], but was positively affected by N fertilization. Our results indicate that only a fraction of the extra carbon fixed by photosynthesis in elevated [CO2] will contribute to enhanced carbon storage into the soil because of the contemporary stimulation of soil heterotrophic respiration. At the same time, the fraction remaining in the soil will enhance the pool of soil labile C.  相似文献   

7.
Binkley D  Stape JL  Takahashi EN  Ryan MG 《Oecologia》2006,148(3):447-454
The release of carbon as CO2 from belowground processes accounts for about 70% of total ecosystem respiration. Insights about factors controlling soil CO2 efflux are constrained by the challenge of apportioning sources of CO2 between autotrophic tree roots (and mycorrhizal fungi) and heterotrophic microorganisms. In some temperate conifer forests, the reduction in soil CO2 efflux after girdling (phloem removal) has been used to separate these sources. Girdling stops the flow of carbohydrates to the belowground portion of the ecosystem, which should slow respiration by roots and mycorrhizae while heterotrophic respiration should remain constant or be enhanced by the decomposition of newly dead roots. Therefore, the reduction in CO2 efflux after girdling should be a conservative estimate of the belowground flux of C from trees. We tested this approach in two tropical Eucalyptus plantations. Tree canopies remained intact for more than 3 months after girdling, showing no reduction in light interception. The reduction in soil CO2 efflux averaged 16–24% for the 3-month period after girdling. The reduction in CO2 efflux was similar for plots with one half of the trees girdled and those with all of the trees girdled. Girdling did not reduce live fine root biomass for at least 5 months after treatment, indicating that large reserves of carbohydrates in the root systems of Eucalyptus trees maintained the roots and root respiration. Our results suggest that the girdling approach is unlikely to provide useful insights into the contribution of tree roots and heterotrophs to soil CO2 efflux in this type of forest ecosystem.  相似文献   

8.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   

9.
Partitioning of 14C was assessed in sweet chestnut seedlings (Castanea sativa Mill.) grown in ambient and elevated atmospheric [CO2] environments during two vegetative cycles. The seedlings were exposed to 14CO2 atmosphere in both high and low [CO2] environments for a 6-day pulse period under controlled laboratory conditions. Six days after exposure to 14CO2, the plants were harvested, their dry mass and the radioactivity were evaluated. 14C concentration in plant tissues, root-soil system respiratory outputs and soil residues (rhizodeposition) were measured. Root production and rhizodeposition were increased in plants growing in elevated atmospheric [CO2]. When measuring total respiration, i.e. CO2 released from the root/soil system, it is difficult to separate CO2 originating from roots and that coming from the rhizospheric microflora. For this reason a model accounting for kinetics of exudate mineralization was used to estimate respiration of rhizospheric microflora and roots separately. Root activity (respiration and exudation) was increased at the higher atmospheric CO2 concentration. The proportion attributed to root respiration accounted for 70 to 90% of the total respiration. Microbial respiration was related to the amount of organic carbon available in the rhizosphere and showed a seasonal variation dependent upon the balance of root exudation and respiration. The increased carbon assimilated by plants grown under elevated atmospheric [CO2] stayed equally distributed between these increased root activities. ei]H Lambers  相似文献   

10.
Rough lemon seedlings were grown in mycorrhizal-infested or phosphorus-amended soil (25 and 300 mg P/kg) in greenhouse experiments. Plants Were inoculated with the citrus burrowing nematode, Radopholus citrophilus (0, 50, 100, or 200 nematodes per pot). Six months later, mycorrhizal plants and nonmycorrhizal, high-P plants had larger shoot and root weights than did non-mycorrhizal, low-P plants. Burrowing nematode population densities were lower in roots of mycorrhizal or nonmycorrhizal, high-P plants than in roots of nonmycorrhizal, low-P plants; however, differences in plant growth between mycorrhizal and nonmycorrhizal plants were not significant with respect to initial nematode inoculum densities. Phosphorus content in leaf tissue was significantly greater in mycorrhizal and nonmycorrhizal, high-P plants compared with nonmycorrhizal, low-P plants. Nutrient concentrations of K, Mg, and Zn were unaffected by nematode parasitism, whereas P, Ca, Fe, and Mn were less in nematode-infected plants. Enhanced growth associated with root colonization by the mycorrhizal fungus appeared to result from improved P nutrition and not antagonism between the fungus and the nematode.  相似文献   

11.
Soil respiration from grasslands plays a critical role in determining carbon dioxide (CO2) feedbacks between soils and the atmosphere. In these often mesic systems, soil moisture and temperature tend to co-regulate soil respiration. Increasing variance of rainfall patterns may alter aboveground–belowground interactions and have important implications for the sensitivity of soil respiration to fluctuations in moisture and temperature. We conducted a set of field experiments to evaluate the independent and interactive effects of rainfall variability and plant–soil processes on respiration dynamics. Plant removal had strong effects on grassland soils, which included altered CO2 flux owing to absence of root respiration; increased soil moisture and temperature; and reduced availability of dissolved organic carbon (DOC) for heterotrophic respiration by microorganisms. These plant-mediated effects interacted with our rainfall variability treatments to determine the sensitivity of soil respiration to both moisture and temperature. Using time-series multiple regression, we found that plants dampened the sensitivity of respiration to moisture under high variability rainfall treatments, which may reflect the relative stability of root contributions to total soil respiration. In contrast, plants increased the sensitivity of respiration to temperature under low variability rainfall treatment suggesting that the environmental controls on soil CO2 dynamics in mesic habitats may be context dependent. Our results provide insight into the aboveground–belowground mechanisms controlling respiration in grasslands under variable rainfall regimes, which may be important for predicting CO2 dynamics under current and future climate scenarios.  相似文献   

12.
 We examined the influence of Glomus intraradices on nonhydraulic signaling of soil drying, in a drought-avoiding plant having stomates that are extremely sensitive to changes in soil moisture. Cowpea [Vigna un guiculata (L.) Walp. 'White Acre'] seedlings were grown in a greenhouse with root systems split between two pots. The 2×3×2 experimental design included two levels of mycorrhizal colonization (presence or absence of Glomus intraradices Schenck & Smith UT143), three levels of phosphorus fertilization within each mycorrhizal treatment and two levels of water (both pots watered or one pot watered, one pot allowed to dry). Stomatal conductance was mostly similar in fully watered mycorrhizal and nonmycorrhizal controls. However, g s of half-dried, nonmycorrhizal plants was reduced on fewer days and to a lesser extent than g s of half-dried, mycorrhizal plants, perhaps related to quicker soil drying in mycorrhizal pots. The partial soil drying treatment had little effect on leaf relative water content or osmotic potential, indicating that declines in g s and leaf growth were induced by some nonhydraulic factor. Leaf growth was inhibited only in nonmycorrhizal plants, evidently due to a difference in phosphorus nutrition between mycorrhizal and nonmycorrhizal plants. The mycorrhizal effect on g s was not associated with phosphorus nutrition. Inhibition of g s was directly related to extent of soil drying, while inhibition of leaf growth was inversely related to extent of soil drying. Accepted: 4 August 1995  相似文献   

13.
Translocation of 14C-photosynthates to mycorrhizal (+ +), half mycorrhizal (0+), and nonmycorrhizal (00) split-root systems was compared to P accumulation in leaves of the host plant. Carrizo citrange seedlings (Poncirus trifoliata [L.] Raf. × Citrus sinensis [L.] Osbeck) were inoculated with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith. Plants were exposed to 14 CO2 for 10 minutes and ambient air for 2 hours. Three to 4% of recently labeled photosynthate was allocated to metabolism of the mycorrhiza in each inoculated root half independent of shoot P concentration, growth response, and whether one or both root halves were colonized. Nonmycorrhizal roots respired more of the label translocated to them than did mycorrhizal roots. Label recovered in the potting medium due to exudation or transport into extraradical hyphae was 5 to 6 times greater for (+ +) versus (00) plants. In low nutrient media, roots of (0+) and (+ +) plants transported more P to leaves per root weight than roots of (00) plants. However, when C translocated to roots utilized for respiration, exudation, etc., as well as growth is considered, (00) plant roots were at least as efficient at P uptake (benefit) per C utilized (cost) as (0+) and (+ +) plants. Root systems of (+ +) plants did not supply more P to leaves than (0+) plants in higher nutrient media, yet they still allocated twice the 14C-photosynthate to the mycorrhiza as did (0+) root systems. This indicates there is an optimal level of mycorrhizal colonization above which the plant receives no enhanced P uptake yet continues to partition photosynthates to metabolism of the mycorrhiza.  相似文献   

14.
Separating ecosystem and soil respiration into autotrophic and heterotrophic component sources is necessary for understanding how the net ecosystem exchange of carbon (C) will respond to current and future changes in climate and vegetation. Here, we use an isotope mass balance method based on radiocarbon to partition respiration sources in three mature black spruce forest stands in Alaska. Radiocarbon (Δ14C) signatures of respired C reflect the age of substrate C and can be used to differentiate source pools within ecosystems. Recently‐fixed C that fuels plant or microbial metabolism has Δ14C values close to that of current atmospheric CO2, while C respired from litter and soil organic matter decomposition will reflect the longer residence time of C in plant and soil C pools. Contrary to our expectations, the Δ14C of C respired by recently excised black spruce roots averaged 14‰ greater than expected for recently fixed photosynthetic products, indicating that some portion of the C fueling root metabolism was derived from C storage pools with turnover times of at least several years. The Δ14C values of C respired by heterotrophs in laboratory incubations of soil organic matter averaged 60‰ higher than the contemporary atmosphere Δ14CO2, indicating that the major contributors to decomposition are derived from a combination of sources consistent with a mean residence time of up to a decade. Comparing autotrophic and heterotrophic Δ14C end members with measurements of the Δ14C of total soil respiration, we calculated that 47–63% of soil CO2 emissions were derived from heterotrophic respiration across all three sites. Our limited temporal sampling also observed no significant differences in the partitioning of soil respiration in the early season compared with the late season. Future work is needed to address the reasons for high Δ14C values in root respiration and issues of whether this method fully captures the contribution of rhizosphere respiration.  相似文献   

15.
Short rotation forests can serve as sources of renewable energy and possibly for soil C storage. However, the high frequency of management practices and the fertilisation could reduce C storage into the soil, by increasing CO2 emissions and annulling the potential of C sequestration. The objectives of this work were to evaluate the impacts of coppicing and fertilisation on total soil CO2 efflux, soil heterotrophic processes and consequent changes of soil C storage in a short rotation poplar plantation. Field soil CO2 efflux, heterotrophic soil CO2 efflux and soil organic C were compared before and after coppicing. Temporal dynamics of fine root biomass and water-soluble carbon after coppicing were also analysed. Coppicing increased total soil CO2 efflux by more than 50%, while heterotrophic soil CO2 efflux remained unchanged. Nevertheless, an increase in total organic carbon was observed as a result of above and belowground litter inputs, as well as root re-growth and exudation. This trend was more evident in fertilised soils due to lower heterotrophic and autotrophic soil CO2 effluxes. Fertilisation can reduce the increase of CO2 emissions after coppicing. Although soil organic C storage increased, the accumulation of labile fractions may trigger microbial respiration in the following years.  相似文献   

16.
Growth of mycorrhizal tomato and mineral acquisition under salt stress   总被引:19,自引:0,他引:19  
 High salt levels in soil and water can limit agricultural production and land development in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) have been shown to decrease plant yield losses in saline soils. The objective of this study was to examine the growth and mineral acquisition responses of greenhouse-grown tomato to colonization by the AMF Glomus mosseae [(Nicol. And Gerd.) Gerd. and Trappe] under varied levels of salt. NaCl was added to soil in the irrigation water to give an ECe of 1.4 (control), 4.7 (medium) and 7.4 dS m–1 (high salt stress). Plants were grown in a sterilized, low P (silty clay) soil-sand mix. Mycorrhizal colonization was higher in the control than in saline soil conditions. Shoot and root dry matter yields and leaf area were higher in mycorrhizal than in nonmycorrhizal plants. Total accumulation of P, Zn, Cu, and Fe was higher in mycorrhizal than in nonmycorrhizal plants under both control and medium salt stress conditions. Shoot Na concentrations were lower in mycorrhizal than in nonmycorrhizal plants grown under saline soil conditions. The improved growth and nutrient acquisition in tomato demonstrate the potential of AMF colonization for protecting plants against salt stress in arid and semiarid areas. Accepted: 21 February 2000  相似文献   

17.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

18.
Mycorrhizal and nonmycorrhizal Pinus halepensis plants were subjected to water stress by withholding irrigation for four months and then rehydrated for 30 d. Water stress affected plants growth and mycorrhizal association was unable to avoid the effects of drought on plant growth. However, when irrigation was re-established the increase in height, number of shoots, total dry mass, and chlorophyll content in the mycorrhizal plants were greater than in non-mycorrhizal plants. The decrease in soil water content decreased the leaf water potential, leaf pressure potential and stomatal conductance. These decreases were higher for nonmycorrhizal than for mycorrhizal plants, indicating that the mycorrhizal fungi permit a higher water uptake from the dry soils. The total content of inorganic solutes was not changed by presence of mycorrhizae.  相似文献   

19.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

20.
Contrasting effects of soil CO2 concentration on root respiration rates during short-term CO2 exposure, and on plant growth during long-term CO2 exposure, have been reported. Here we examine the effects of both short- and long-term exposure to soil CO2 on the root respiration of intact plants and on plant growth for bean (Phaseolus vulgaris L.) and citrus (Citrus volkameriana Tan. & Pasq.). For rapidly growing bean plants, the growth and maintenance components of root respiration were separated to determine whether they differ in sensitivity to soil CO2. Respiration rates of citrus roots were unaffected by the CO2 concentration used during the respiration measurements (200 and 2000 μmol mol−1), regardless of the soil CO2, concentration during the previous month (600 and 20 000 μmol mol−1). Bean plants were grown with their roots exposed to either a natural CO2 diffusion gradient, or to an artificially maintained CO2 concentration of 600 or 20 000 μmol mol−1. These treatments had no effect on shoot and root growth. Growth respiration and maintenance respiration of bean roots were also unaffected by CO2 pretreatment and the CO2 concentration used during the respiration measurements (200–2000 μmol mol−1). We conclude that soil CO2 concentrations in the range likely to be encountered in natural soils do not affect root respiration in citrus or bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号