首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The great damage caused by native invasive species on natural ecosystems is prompting increasing concern worldwide. Many studies have focused on exotic invasive species. In general, exotic invasive plants have higher resource capture ability and utilization capacity, and lower leaf construction cost (CC) compared to noninvasive plants. However, the physiological mechanisms that determine the invasiveness of native plants are poorly understood. We hypothesized that native invaders, like exotic invaders, may have higher resource capture ability and utilization efficiency compared to native noninvaders. To test this hypothesis, ecophysiological traits including light-saturated photosynthetic rate (Amax), specific leaf area (SLA), photosynthetic nitrogen use-efficiency (PNUE), photosynthetic energy-use efficiency (PEUE), and mass-based and area-based leaf construction cost (CCmass and CCarea) were measured. We compared the above traits between three pairs of native invasive and noninvasive native species, and between three pairs of exotic invasive and noninvasive species in Guangzhou, southern China. Our results showed that the native invaders had higher Amax, SLA, PNUE, PEUE and lower CCmass, CCarea, compared to native noninvaders and that these traits were also found in the exotic invaders. PNUE and PEUE in the native invaders were 150.3 and 129.0% higher, respectively, than in noninvasive native species, while these same measures in exotic invaders were 43.0 and 94.2% higher, respectively, than in exotic noninvasive species. The results indicated that native invaders have higher resource capture ability and resource utilization efficiency, suggesting that these traits may be a common biological foundation underlying successful invasion by both native and exotic invasives.  相似文献   

2.
Leaf carbon capture strategies of native and exotic invasive plants were compared by examining leaf traits and their scaling relationships at community and global scales. Community-level leaf trait data were obtained for 55 vascular plant species from nutrient-enriched and undisturbed bushland in Sydney, Australia. Global-scale leaf trait data were compiled from the literature for 75 native and 90 exotic invasive coexisting species. At the community level, specific leaf area (SLA), foliar nitrogen and phosphorus (N(mass) and P(mass)) and N:P ratio were significantly higher for exotics at disturbed sites compared with natives at undisturbed sites, with natives at disturbed sites being intermediate. SLA, N(mass) and P(mass) were positively correlated, with significant shifts in group means along a common standardized major axis (SMA) slope. At the global scale, invasives had significantly higher N(mass), P(mass), assimilation rate (A(mass) and A(area)) and leaf area ratio (LAR) than natives. All traits showed positive correlations, with significant shifts in group means along a common slope. For a given SLA, invasives had higher A(mass) (7.7%) and N(mass) (28%). Thus, exotic invasives do not have fundamentally different carbon capture strategies from natives but are positioned further along the leaf economics spectrum towards faster growth strategies. Species with leaf traits enabling rapid growth will be successful invaders when introduced to novel environments where resources are not limited.  相似文献   

3.
Aims Invasive species often have higher relative growth rates (RGR) than their native counterparts. Nutrient use efficiency, total leaf area and specific leaf area (SLA) are traits that may confer RGR differences between natives and invasives, but trait differences are less prominent when the invasive species belongs to the same plant functional type as the dominant native species. Here, we test if traits displayed soon after germination confer an early size advantage. Specifically, we predicted that invasive species seedlings grow faster than the natives because they lack trade-offs that more strongly constrain the growth of native species.Methods We quantified plant morphological and physiological traits and RGR during early seedling growth at high and low nutrient levels in three dominant perennial native C4 grasses: Panicum virgatum L. (switchgrass), Schizachyrium scoparium (Michx.) Nash (little bluestem) and Andropogon gerardii Vitman (big bluestem); and a perennial C4 exotic invasive grass, Sorghum halepense (L.) Pers. (Johnsongrass).Important findings After 2 weeks of growth, Johnsongrass seedlings had greater biomass, SLA and photosynthetic nitrogen use efficiency, but lower leaf N concentrations (% leaf N) and root:shoot ratio than natives. As growth continued, Johnsongrass more quickly produced larger and thicker leaves than the natives, which dampened the growth advantage past the first 2 to 3 weeks of growth. Investment in carbon gain appears to be the best explanation for the early growth advantage of Johnsongrass. In natives, growth was constrained by an apparent trade-off between allocation to root biomass, which reduced SLA, and production of leaves with high N content, which increased carbon gain. In Johnsongrass, root:shoot ratio did not interact with other traits, and % leaf N was decoupled from RGR as a result of a trade-off between the positive indirect association of % leaf N with RGR and the negative direct association of % leaf N with RGR.  相似文献   

4.

Background and Aims

Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines.

Methods

In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes.

Key Results

Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energy-use efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR.

Conclusions

These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.  相似文献   

5.
Feng YL  Fu GL  Zheng YL 《Planta》2008,228(3):383-390
Comparisons between invasive and native species may not characterize the traits of invasive species, as native species might be invasive elsewhere if they were introduced. In this study, invasive Oxalis corymbosa and Peperomia pellucida were compared with their respective noninvasive alien congeners. We hypothesized that the invasive species have higher specific leaf (SLA) than their respective noninvasive alien congeners, and analyzed the physiological and ecological consequences of the higher SLA. Higher SLA was indeed the most important trait for the two invaders, which was associated with their lower leaf construction cost, higher nitrogen (N) allocation to photosynthesis and photosynthetic N use efficiency (PNUE). The higher N allocation to photosynthesis of the invaders in turn increased their PNUE, N content in photosynthesis, biochemical capacity for photosynthesis, and therefore light-saturated photosynthetic rate. The above resource capture-, use- and growth-related traits may facilitate the two invaders' invasion, while further comparative studies on a wider range of invasive and noninvasive congeners are needed to understand the generality of this pattern and to fully assess the competitive advantages afforded by these traits.  相似文献   

6.
入侵种银胶菊和三叶鬼针草与本地种气体交换特性的比较   总被引:1,自引:0,他引:1  
以菊科入侵植物银胶菊(Parthenium hysterophorus)和三叶鬼针草(Bidens pilosa)以及与其共生的菊科本地植物小蓟(Cirsium setosum)为对象,比较了3种植物气体交换参数和叶片特性的差异。结果表明,银胶菊和三叶鬼针草的净光合速率(net photosynthetic rate,P_n)、叶绿素含量、比叶面积(specific leaf area,SLA)、叶片单位质量P含量(leaf P content per unit mass,P_(mass))、光合能量利用效率(photosynthetic energy use efficiency,PEUE)和光合氮利用效率(photosynthetic nitrogen use efficiency,PNUE)均显著高于小蓟。植物叶片P_n与水分利用效率(water use efficiency,WUE)、叶片P_(mass)、SLA呈极显著正相关,植物叶片单位质量N含量(leaf P content per unit mass,N_(mass))与叶片SLA、单位质量建成成本(leaf construction cost per unit mass,CC_(mass))、叶绿素含量呈极显著正相关。与本地植物相比,较高的气体交换参数和叶片生化指标有可能是银胶菊和三叶鬼针草成功入侵的原因之一。  相似文献   

7.
Plant‐invasive success is one of the most important current global changes in the biosphere. To understand which factors explain such success, we compared the foliar traits of 41 native and 47 alien‐invasive plant species in Oahu Island (Hawaii), a location with a highly endemic flora that has evolved in isolation and is currently vulnerable to invasions by exotic plant species. Foliar traits, which in most cases presented significant phylogenetic signal, i.e. closely related species tended to resemble each other due to shared ancestry, separated invasive from native species. Invasive species had lower leaf mass per area and enhanced capacities in terms of productivity (photosynthetic capacity) and nutrient capture both of macro‐ (N, P, K) and microelements (Fe, Ni, Cu and Zn). All these differences remain highly significant after removing the effects of phylogenetic history. Alien‐invasive species did not show higher efficiency at using limiting nutrient resources, but they got faster leaf economics returns and occupied a different biogeochemical niche, which helps to explain the success of invasive plants and suggests that potential increases in soil nutrient availability might favor further invasive plant success.  相似文献   

8.
Six leaf traits,i.e.,fresh mass (FM),dry mass (DM),leaf dry matter content (DMC),area (AR),specific leaf area (SLA) and thickness (TH) from 23 plant species in the southeastern Keerqin Sandy Lands,China were measured.The results show that leaf traits of herbs were more diversified than those of shrubs and trees and aver-age SLA tended towards a decreasing trend from herbs to shrubs to trees.On the contrary,DMC and DM show an upward trend from herbs to shrubs to trees.No apparent difference was found in TH.Except for DM and TH,there were significant variations in SLA and DMC among three different growth forms.Moreover,a significant correla-tion was found between SLA and DMC.It is concluded that SLA and DMC could be used to predict species posi-tion along a resource use gradient.  相似文献   

9.
Abstract: Plant species vary widely in their average leaf lifespan (LL) and specific leaf area (SLA, leaf area per dry mass). The negative LL–SLA relationship commonly seen among species represents an important evolutionary trade‐off, with higher SLA indicating greater potential for fast growth (higher rate of return on a given investment), but longer LL indicating a longer duration of the revenue stream from that investment. We investigated how these leaf‐economic traits related to aggregate properties of the plant crown. Across 14 Australian sclerophyll shrub species, those with long LL accumulated more leaf mass and leaf area per unit ground area. Light attenuation through their canopies was more severe. Leaf accumulation and light attenuation were more weakly related to SLA than to LL. The greater accumulation of foliage in species with longer LL and lower SLA may counterbalance their generally lower photosynthetic rates and light‐capture areas per gram of leaf.  相似文献   

10.
It is widely assumed that higher levels of intraspecific variability in one or more traits should allow species to persist under a wider range of environmental conditions. However, few studies have examined whether species that exhibit high variability are found in a wider range of environmental conditions, and whether variability increases the ability of a species to adapt to prevailing ecological gradients. We used four plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N) and maximum plant height in 49 species across a strong environmental gradient to answer three questions: 1) is there evidence for ‘high‐variability’ species (that is, species which show high variability in multiple traits, simultaneously)? 2) are species with more variable traits present across a wider range of environmental conditions than less variable species? And 3) whether more variable species show better trait–environment matching to the prevailing abiotic (soil moisture) gradient at the site? We found little evidence for a ‘high‐variability’ species. Variability was correlated for two leaf traits, SLA and LDMC, while variability in leaf traits and plant height were not correlated. We found little evidence that more variable species were present in more diverse conditions: only variation in SLA was correlated with a wider ecological niche breadth. For plant traits along the soil‐moisture gradient, higher variability led to better trait–environment matching in half of measured traits. Overall, we found little support for the existence of ‘high‐variability’ species, but that variability in SLA is correlated with a wider ecological breadth. We also found evidence that variation in traits can improve trait–environment matching, a relationship which may facilitate our understanding ecological breadth along prevailing gradients, and community assembly on the basis of traits.  相似文献   

11.
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.  相似文献   

12.
We studied 29 pine (Pinus) species to test the hypothesis that invasive species in disturbed habitats have distinct attributes. Seedling relative growth rate (RGR) and measures of invasiveness were positively associated across species as well as within phylogenetically independent contrasts. High RGR, small seed masses, and short generation times characterize pine species that are successful invaders in disturbed habitats. Discriminant analysis and logistic regression revealed that RGR was the most significant factor among these life-history traits separating invasive and noninvasive species. We also explored the causes of differences in RGR among invasive and noninvasive species. While net assimilation rate, leaf mass ratio, and specific leaf area (SLA) were all found to be contributing positively to RGR, SLA was found to be the main component responsible for differences in RGR between invasive and noninvasive pines. We investigated differences in SLA further by studying leaf anatomy, leaf density, and leaf thickness. We also evaluated relative leaf production rate as an important aspect of SLA. We proposed a hypothetical causal network of all relevant variables.  相似文献   

13.
Net photosynthesis (P n), transpiration (E), stomatal conductance (g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 species) and non-clonal species (103 species), along the 1 670 km Northeast China Transect (NECT) were analyzed. The results showed that P n and WUE appeared to be lower in the east and west ends of NECT, with peaks in the middle. Transpiration was found to be higher in the west end, where most temperate desert species were distributed. On the same site, most clonal species showed higher P n and related physiological variables than non-clonal species. For different growth forms over NECT, e.g. forest trees, shrubs and grasses, meadow steppe shrubs and grasses, typical steppe shrubs and grasses, the meadow steppe and typical steppe grasses, showed higher values of physiological variables than the forest or the desert species. But for the two reproductive plant functional types (PFTs), clonal species had higher physiological variables, with averages of 22%, 15%, 23% and 14% higher than the non-clonal ones for P n, E, gs, and WUE, respectively. Such differences indicated that clonal species might have advantages over non-clonal species in utilizing environmental resources such as light, CO2, and especially water.  相似文献   

14.
The mechanisms underlying biological invasions are still not well elucidated. In this study, ecophysiological traits of invasive Eupatorium adenophorum and native E.   japonicum were compared at 10 irradiances in field. I hypothesized that the invader may allocate a higher fraction of leaf nitrogen (N) to photosynthesis and have higher light-saturated photosynthetic rate ( P max) and specific leaf area (SLA) than E.   japonicum . The invader had a significantly higher ability to acclimate to high irradiance than E.   japonicum , while it showed a similar shade-tolerant ability. The invader indeed allocated a higher fraction of leaf N to photosynthesis than E.   japonicum , which, with its high leaf N content ( N A), resulted in a higher N content in photosynthesis ( N P), contributing to its higher biochemical capacity for photosynthesis and P max. However, the invader had a significantly lower SLA than E.   japonicum , contributing to its higher P max but increasing its area-based leaf construction cost. The abilities to acclimate to a wider range of irradiance and to allocate a higher fraction of leaf N to photosynthesis, and the higher P max, N A, N P and leaf area ratio may contribute to the invasion of the invader. High SLA is not always necessary for invasive species.  相似文献   

15.
Nine leaf traits (area, fresh weight, dry weight, volume, density, thickness, specific leaf area (SLA), dry matter content (LDMC), leaf nitrogen content (LNC)) from ten plant species at eight sites in southern mediterranean France were investigated in order to assess their variability along a climatic gradient and their ranking congruency power. After examination of trait correlation patterns, we reduced the nine initial leaf traits to four traits, representative of three correlation groups: allometric traits (dry weight), functional traits (SLA and dry matter percentage) and Leaf Thickness. We analysed the variability of these four leaf traits at species and site level. We observed that between species variation (between 64.5 for SLA and 91% for LDMC) is higher than within species variation. Allowing a good congruency of species ranking assessed by spearman rank correlation () and a good reallocation of individuals to species by discriminant analysis. A site level variability (between 0.7% for Dry weight and 6.9% for SLA) was identified and environmental parameters (altitude, temperature, precipitation, nitrogen, pH) were considered as probable control factors. We found significant correlation between SLA, LDMC and the average minimum temperature (respectively r=0.87 and r=-0,9) and no correlation for the other traits or environmental parameters. Furthermore, we conclude that two leaf traits appear to be central in describing species: specific leaf area (SLA), percentage of dry matter (LDMC. While, SLA and LDMC are strongly correlated, LDMC appears to be less variable than SLA. According to our results the Dry Matter Content (or its reversal Leaf Water Content) appears the best leaf trait to be quantified for plant functional screening. Leaf thickness appeared to be rather uncorrelated with other leaf traits and show no environmental contingency; its variability could not have been explained in this study. Further studies should focus on this trait. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.

The present study was carried out to analyze the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy infestation by lianas. A total of 11 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (with or without liana). In the liana-free environment (L), evergreen trees had significantly higher leaf tissue density (LTD) and total chlorophyll (CHLt) than the deciduous species. Whereas the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed with the well-established global trait-pair relationships (leaf thickness (LT) vs. SLA, Nmass vs. LT, SLA vs. Nmass, and LDMC vs. SLA). There was a significant difference between L+ and L individuals in leaf area (LA), petiole length (PL), SLA, LDMC, and CHLt in the deciduous species. On the other hand, evergreen species showed marked differences across LT, SLA, LTD, Nmass, and chlorophyll components between L+ and L individuals of the same species. The results revealed the differential impact of liana colonization on the host trees with contrasting leaf habits. The deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environments (L), whereas evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment and further, the magnitude of such impact may vary among species of different leaf habits. The result also indicated the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species explaining the patterns of species co-existence.

  相似文献   

17.
The prolific amount of growth and reproduction in invasive plants may be achieved by greater net photosynthesis and/or resource-use efficiency. I tested the hypotheses that leaf-level photosynthetic capacity and resource-use efficiency were greater in two invasive species of Rubus as compared with two noninvasive species that have overlapping distributions in the Pacific Northwest. The invasive species had significantly higher photosynthetic capacity and maintained net photosynthesis (A) over a longer period of the year than the noninvasive species. The construction cost (CC) of leaf tissue per unit leaf mass was comparable among the four species, but the invasive species allocated less nitrogen (N) per unit leaf mass. On a leaf area basis, both leaf CC and N were higher for the invasive species. The specific leaf area (SLA) was also lower in the invasive species, indicating less photosynthetic area per gram leaf tissue. The invasive species achieved high A at lower resource investments than the noninvasive species, including having higher maximum photosynthetic rate (A(max)) per unit dark respiration (R(d)), greater A(max) per unit leaf N (photosynthetic nitrogen-use efficiency), and greater water-use efficiency as measured by instantaneous rates of A per unit transpiration (A/E) and by integrated A/E inferred from stable carbon isotope ratios (δ(13)C). Using discriminant analysis, these photosynthetic characteristics were found to be powerful in distinguishing between the invasive and noninvasive Rubus. A(max) and A/E were identified as the most useful variables for distinguishing between the species, and therefore, may be important factors contributing to the success of these invasive species.  相似文献   

18.
Firn J  Prober SM  Buckley YM 《PloS one》2012,7(4):e35870
In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4) perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C:N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species.  相似文献   

19.
植物的生理生态特征决定了植物在生态系统中的分布模式和物种的丰度。本文在开展样地调查的基础上,应用Li-6400光合测定系统研究了海南岛热带山地雨林原始林3个层次的6个优势种与9个伴生种幼树的光合作用参数,并测定了相应叶片的比叶面积(SLA)和氮、磷含量。15个种的SLA为38.2~143.7 cm2·g-1、单位面积最大光合速率(A-area)为2.77~7.61 μmol·m-2·s-1、单位干重最大光合速率(A-mass)为21.2~83.4 μmol·kg-1·s-1,单位面积暗呼吸速率(Rd-area)为0.02~1.15 μmol·m-2·s-1、单位干重暗呼吸速率(Rd-mass)为0.19~12.61 μmol·kg-1·s-1,光补偿点(LCP)为2.5~32.2 μmol·m-2·s-1,表观量子效率(Ф)为0.006 6~0.042 8 μmol·μmol-1 photon,叶片氮(LN)含量为7.98~23.63 mg·g-1,叶片磷(LP)含量为3.98~13.40 mg·g-1。中上层种的幼树具有较高的比叶面积、单位干重最大光合速率和表观量子效率;上层种的暗呼吸速率最低;幼树叶片的氮、磷含量随物种成树所在层次升高而减少,次序为下层种>中层种>上层种,但差异均不显著(P>0.05)。优势种和伴生种的光响应参数与SLA存在相关关系。伴生种的LN与SLA正相关(P<0.01),LP与SLA负相关(P<0.05);优势种的LN、LP与SLA不相关(P>0.05)。  相似文献   

20.
Life history evolution of many clonal plants takes place with long periods of exclusively clonal reproduction and under largely varying ramet densities resulting from clonal reproduction. We asked whether life history traits of the clonal herb Ranunculus reptans respond to density-dependent selection, and whether plasticity in these traits is adaptive. After four generations of exclusively clonal propagation of 16 low and 16 high ramet-density lines, we studied life history traits and their plasticities at two test ramet-densities. Plastic responses to higher test-density consisted of a shift from sexual to vegetative reproduction, and reduced flower production, plant size, branching frequency, and lengths of leaves and internodes. Plants of high-density lines tended to have longer leaves, and under high test-density branched less frequently than those of low-density lines. Directions of these selection responses indicate that the observed plastic branching response is adaptive, whereas the plastic leaf length response is not. The reverse branching frequency pattern at low test-density, where plants of high-density lines branched more frequently than those of low-density lines, indicates evolution of plasticity in branching. Moreover, when grown under less stressful low test-density, plants of high-density lines tended to grow larger than the ones of low-density lines. We conclude that ramet density affects clonal life-history evolution and that under exclusively clonal propagation clonal life-history traits and their plasticities evolve differently at different ramet densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号