首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The presence of xenobiotic contaminants especially metals in coastal waters is a major concern as they are immunotoxic to aquatic animals even at low concentrations. In our present study, mud crab Scylla serrata was exposed to three sublethal concentrations (0.4, 0.6 and 0.8 mg/L) of nickel for 30 days under laboratory conditions and the alterations of hematological parameters like haemocyte count, clotting time, haemocyte viability, protein content and immunomodulatory components like phenoloxidase, phagocytosis and superoxide anion generation were measured. In addition, the accumulation patterns of nickel were measured in gills, hepatopancreas and ovary. The accumulation was more in gills when compared to hepatopancreas and ovary of crabs exposed to nickel and was not detected in the control crabs. The results revealed a significant (P < 0.05) induction of superoxide anion generation and phagocytosis activity in the haemolymph of the crabs exposed to nickel when compared to control. On the contrary, the rest of the parameters were significantly (P < 0.05) reduced in the experimental groups when compared to the control. All the studied parameters exhibited a concentration dependent response.  相似文献   

2.
The uptake of paralytic shellfish poisoning (PSP) toxins and spirolides by the paddle crab (Ovalipes catharus) was investigated in two laboratory feeding trials using Greenshell? mussels (Perna canaliculus), which had been fed toxic strains of either Alexandrium catenella or A. ostenfeldii, as a vector. Toxin uptake by crabs occurred in both feeding trials and was limited to the visceral tissue; no toxins were detected in the body meat or the gills. The first trial utilized a strain of A. catenella that had high total PSP toxin content, 442.3 ± 91.6 fmol/cell, that was dominated by low toxicity N-sulfocarbamoyl toxins resulting in a low cellular toxicity, 5.5 ± 1.6 pg STXequiv./cell. In this trial, toxin accumulation in the crabs was highly variable and ranged from 3.8 to 221.5 μg STXequiv./100 g, with 3/4 of the crabs exceeding the regulatory limit of 80 μg STXequiv./100 g. Eight days after feeding on toxic mussels the crabs still retained high levels of toxin suggesting that depuration rates in this species may be slow. In the second feeding trial, the A. ostenfeldii strain fed to mussels produced low levels of both PSP toxins (52.0 ± 19.5 fmol/cell; 1.4 ± 0.3 pg STXequiv./cell) and spirolides (1.8 pg/cell) and, as a result, the concentration transferred to crabs via the mussels was very low-PSP toxins ranged from 2.5 to 6.8 μg STXequiv./100 g and spirolides from 6 to 7 μg/kg. The results of our study demonstrate that paddle crabs are capable of acquiring both PSP toxins and spirolides and suggest that this may occur in the wild during a toxic shellfish event. It also highlights the need to remove the viscera before consumption.  相似文献   

3.
《Process Biochemistry》2007,42(1):57-64
Crop residues can be used for biogas production in farm scale reactors. Use of a process temperature below mesophilic conditions reduces the need for heating as well as investment and operating costs, although it may also reduce the methane yield. In the present study the effect of temperature on net energy output was studied using sugar beet tops and straw as substrates for two pilot-scale reactors. Digestion was found to be stable down to 11 °C and optimal methane yield was obtained at 30 °C. The methane yield and process performance was studied at 15 °C and 30 °C as organic loading rates were increased. It was found that the highest net energy production would be achieved at 30 °C with a loading rate of 3.3 kg VS m−3 day−1. Running a low-cost process at ambient temperatures would give a net energy output of 60% of that obtained at 30 °C.  相似文献   

4.
The effect of temperature (26 °C, 28 °C, 30 °C and 35 °C) on the growth of native CAAT-3-2005 Microcystis aeruginosa and the production of Chlorophyll-a (Chl-a) and Microcystin-LR (MC-LR) were examined through laboratory studies. Kinetic parameters such as specific growth rate (μ), lag phase duration (LPD) and maximum population density (MPD) were determined by fitting the modified Gompertz equation to the M. aeruginosa strain cell count (cells mL−1). A 4.8-fold increase in μ values and a 10.8-fold decrease in the LPD values were found for M. aeruginosa growth when the temperature changed from 15 °C to 35 °C. The activation energy of the specific growth rate (Eμ) and of the adaptation rate (E1/LPD) were significantly correlated (R2 = 0.86). The cardinal temperatures estimated by the modified Ratkowsky model were minimum temperature = 8.58 ± 2.34 °C, maximum temperature = 45.04 ± 1.35 °C and optimum temperature = 33.39 ± 0.55 °C.Maximum MC-LR production decreased 9.5-fold when the temperature was increased from 26 °C to 35 °C. The maximum production values were obtained at 26° C and the maximum depletion rate of intracellular MC-LR was observed at 30–35 °C. The MC-LR cell quota was higher at 26 and 28 °C (83 and 80 fg cell−1, respectively) and the MC-LR Chl-a quota was similar at all the different temperatures (0.5–1.5 fg ng−1).The Gompertz equation and dynamic model were found to be the most appropriate approaches to calculate M. aeruginosa growth and production of MC-LR, respectively. Given that toxin production decreased with increasing temperatures but growth increased, this study demonstrates that growth and toxin production processes are uncoupled in M. aeruginosa. These data and models may be useful to predict M. aeruginosa bloom formation in the environment.  相似文献   

5.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

6.
This study aimed to assess biomass growth as a response variable in lichens during short-term laboratory experiments. To do this, we studied the influence of UV-B and temperature on lichen performance including the synthesis of solar radiation screening cortical compounds. The pioneer lichen Xanthoria aureola from exposed sea cliffs and the old forest lichen Lobaria pulmonaria were cultivated for 15 days in the laboratory in a factorial experiments with temperature (12 and 21 °C) and UV-B (0, 0.1, 0.3 and 1.0 W m?2) as treatments. Prior to the experiment, the cortical pigment parietin was non-destructively extracted from X. aureola, whereas the sampled shade-adapted thalli of L. pulmonaria lacked cortical melanic compounds. Therefore both lichens were deficient in cortical sun-screening compounds when the UV-B exposure started. At 12 °C, the relative growth rate was 7.2 ± 0.6 and 3.0 ± 0.8 mg g?1 day?1 in L. pulmonaria and X. aureola, respectively, reduced to 1.8 ± 0.5 and ?2.6 ± 0.9 mg g?1 day?1, at 21 °C. These figures showed that lichen growth is a useful response variable in short-term laboratory experiments. Growth was not influenced by UV-B alone in these pigment-deficient transplants, suggesting that UV-B had little adverse effects on either of the lichen bionts. The cortical sun screens (parietin and melanic compounds) were synthesized in the presence of UV-B, and increased statistically significantly with increasing UV-B at both cultivation temperatures. However, in X. aureola the synthesis was highest at the lowest temperature (12 °C). At 12 °C, changes in chlorophylls, Fv/Fm and NPQ during cultivation were consistent with a substantial level of acclimation to the growth chamber conditions for both species, whereas strong reductions in photosynthetic pigments, Fv/Fm and ФII at 21 °C indicated serious damage and chlorophyll degradation at high temperature. In conclusion, lichen growth and the synthesis of protective compounds are highly responsive lichen processes in short-term experiments.  相似文献   

7.
《Process Biochemistry》2007,42(7):1069-1074
Crab shell (CS) waste samples (particle size 3–10 and 20–35 mm) were inoculated with the newly isolated Pseudomonas aeruginosa F722 to study the efficiency of microbial demineralization (DM) and deproteinization (DP) in the process of extracting chitin. The inoculated waste was incubated for 7 days at 25, 30 and 35 °C. Various concentrations of glucose were supplemented as carbon source. At the optimal temperature of 30 °C, DM was 92% and DP was 63% DP, whereas the pH dropped from initial pH 8.0 to 4.1. In comparative experiments with different amounts of CS waste, 5% CS waste treatment was shown to be the optimal amount for efficient DM. A positive relationship is correlated between DM and glucose concentration (r2 = 0.821), whereas a negative relationship is correlated between DM and pH (r2 = 0.793). DP and protease activity were little affected by different crab shell sizes.  相似文献   

8.
The biocontrol activity of Rhodotorula glutinis on gray mold decay and blue mold decay of apple caused by Botrytis cinerea and Penicillium expansum, respectively, was investigated, as well as its effects on postharvest quality of apple fruits. The results show there was a significant negative correlation between concentrations of the yeast cells and the disease incidence of the pathogens. The higher concentration of the R. glutinis, the better effect of the biocontrol capacity. At concentrations of R. glutinis 1 × 108 CFU ml?1, the amount of gray mold decay was completely inhibited after 5 days incubation at 20 °C, after challenge with B. cinerea spores suspension of 1 × 105 spores ml?1; While the blue mold decay was completely inhibited at concentrations of 5 × 108 CFU ml?1, at challenged with P. expansum spores suspension of 5 × 104 spores ml?1. These results demonstrated that the efficacy of R. glutinis in controlling of gray mold decay of apples was better than the efficacy of controlling blue mold. R. glutinis within inoculated wounds on apples increased in numbers at 20 °C from an initial level of 9.5 × 105 CFU per wound to 2.24 × 107 CFU at 20 °C after 1 day. The highest population of the yeast was recovered 4 days after inoculation, the yeast population in wounds increased by 56.9 times. After that, the population of the yeast began to decline very slowly. R. glutinis significantly reduced the incidence of natural infections on intact fruit from 75% in the control fruit to 28.3% after 5 days at 20 °C, and from 58.3 to 6.7% after 30 days at 4 °C followed by 4 days at 20 °C. R. glutinis treatment had no deleterious effect on quality parameters after 5 days at 20 °C or after 30 days at 4 °C followed by 4 days at 20 °C.  相似文献   

9.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

10.
The purpose of this study was to determine the impact of the core to skin temperature gradient during incremental running to volitional fatigue across varying environmental conditions. A secondary aim was to determine if a “critical” core temperature would dictate volitional fatigue during running in the heat. 60 participants (n=49 male, n=11 female; 24±5 yrs, 177±11 cm, 75±13 kg) completed the study. Participants were uniformly stratified into a specific exercise temperature group (18 °C, 26 °C, 34 °C, or 42 °C) based on a 3-mile run performance. Participants were equipped with core and chest skin temperature sensors and a heart rate monitor, entered an environmental chamber (18 °C, 26 °C, 34 °C, or 42 °C), and rested in the seated position for 10 min before performing a walk/run to volitional exhaustion. Initial treadmill speed was 3.2 km h−1 with a 0% grade. Every 3 min, starting with speed, speed and grade increased in an alternating pattern (speed increased by 0.805 km h−1, grade increased by 0.5%). Time to volitional fatigue was longer for the 18 °C and 26 °C group compared to the 42 °C group, (58.1±9.3 and 62.6±6.5 min vs. 51.3±8.3 min, respectively, p<0.05). At the half-way point and finish, the core to skin gradient for the 18 °C and 26 °C groups was larger compared to 42 °C group (halfway: 2.6±0.7 and 2.0±0.6 vs. 1.3±0.5 for the 18 °C, 26 °C and 42 °C groups, respectively; finish: 3.3±0.7 and 3.5±1.1 vs. 2.1±0.9 for the 26 °C, 34 °C, and 42 °C groups, respectively, p<0.05). Sweat rate was lower in the 18 °C group compared to the 26 °C, 34 °C, and 42 °C groups, 3.6±1.3 vs. 7.2±3.0, 7.1±2.0, and 7.6±1.7 g m−2 min−1, respectively, p<0.05. There were no group differences in core temperature and heart rate response during the exercise trials. The current data demonstrate a 13% and 22% longer run time to exhaustion for the 18 °C and 26 °C group, respectively, compared to the 42 °C group despite no differences in beginning and ending core temperatures or baseline 3-mile run time. This capacity difference appears to result from a magnified core to skin gradient via an environmental temperature advantageous to convective heat loss, and in part from an increased sweat rate.  相似文献   

11.
《Journal of Asia》2014,17(3):349-354
Temperature-dependent development of Spodoptera exigua (Hübner) were evaluated at eight constant temperatures of 12, 15, 20, 25, 30, 33, 34 and 36 °C with a variation of 0.5 °C on sugar beet leaves. No development occurred at 12 °C and 36 °C. Total developmental time varied from 120.50 days at 15 °C to 14.50 days at 33 °C. As temperature increased from 15 °C to 33 °C, developmental rate (1/developmental time) of S. exigua increased but declined at 34 °C. The lower temperature threshold (Tmin) was estimated to be 12.98 °C and 12.45 °C, and the thermal constant (K) was 294.99 DD and 311.76 DD, using the traditional and Ikemoto–Takai linear models, respectively. The slopes of the Ikemoto–Takai linear model for different immature stages were different, violating the assumption of rate isomorphy. Data were fitted to three nonlinear models to predict the developmental rate and estimate the critical temperatures. The Tmin values estimated by Lactin-2 (12.90 °C) and SSI (13.35 °C) were higher than the value estimated by Briere-2 (8.67 °C). The estimated fastest development temperatures (Tfast) by the Briere-2, Lactin-2 and SSI models for overall immature stages development of S. exigua were 33.4 °C, 33.9 °C and 32.4 °C, respectively. The intrinsic optimum temperature (TΦ) estimated from the SSI model was 28.5 °C, in which the probability of enzyme being in its native state is maximal. The upper temperature threshold (Tmax) values estimated by these three nonlinear models varied from 34.00 °C to 34.69 °C. These findings on thermal requirements can be used to predict the occurrence, number of generations and population dynamics of S. exigua.  相似文献   

12.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

13.
Screening of culture collection afforded nitrile-utilizing fungi belonging to genera Aspergillus, Talaromyces and Penicillium. Fusarium solani O1 was enriched from soil using 3-cyanopyridine as the sole source of nitrogen. This strain, and Penicillium multicolor CCF 2244 (the best one of the culture collection strains), showed comparable specific benzonitrile-hydrolyzing activities (0.95 and 0.87 μmol of benzoic acid h−1 mg−1 of dry cell weight at 28 °C, respectively). These fungi showed similar substrate specificities for substituted benzonitriles and heterocyclic nitriles but different pH and temperature optima (pH 8 and 38 °C for P. multicolor, pH 7 and 48 °C for F. solani). Amides as by-products were produced from some heterocyclic nitriles. Both fungi showed an amidase activity for nicotinamide.  相似文献   

14.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

15.
Isomaltulose is a structural isomer of sucrose commercially used in food industries. Glucosyltransferase produced by Erwinia sp. D12 catalyses an intramolecular transglucosylation of sucrose giving isomaltulose. An experimental Design and Response Surface Methodology were applied for the optimization of the nutrient concentration in the culture medium for enzyme production in shaken flasks at 200 rpm and 30 °C. A higher production of glucosyltransferase (7.47 Uml−1) was observed in the culture medium containing sugar cane molasses (160 gl−1), bacteriological peptone (20 gl−1) and yeast extract Prodex Lac SD® (15 gl−1) after 8 h, at 30 °C. The highest production of glucosyltransferase in the 6.6-l bioreactor (14.6 Uml−1) was obtained in the optimized culture medium after 10 h at 26 °C. When Erwinia sp. D12 cells were immobilized in sodium alginate, it was verified that sodium alginate solution A could be substituted by a cheaper one, sodium alginate solution B. Using a 40% cell suspension and 2% sodium alginate solution B for cell immobilization in a packed-bed reactor, 64.1% conversion of sucrose to isomaltulose was obtained. The packed-bed reactor with immobilized cells plus glutaraldehyde and polyethylenimine solutions remained in a pseudo-steady-state for 180 h.  相似文献   

16.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

17.
Lipases are important to high value product synthesis, modification, and enhancement. However, they are often unstable above 40 °C. While most current applications of high hydrostatic pressure (HHP) are for inactivating deleterious enzymes, there is evidence that HHP can stabilize and increase activity of some enzymes. This study examines the apparent kinetics of immobilized lipase-catalyzed synthesis of isoamyl acetate at HHP in hexane. HHP reduced thermal inactivation of lipase by up to 152% after 4 h at 80 °C and 400 MPa when compared to incubations at low pressure. No significant differences were found in activation energy (Ea) at different pressures, irrespectively of the pressurization and heating sequence, and were between 35.7 ± 3.5 and 47.8 ± 8.2 kJ mol?1, depending on the method. In all methods utilized, activity at 63.5 and 80 °C at 400 MPa was greater (from about 20 to 96% increase) than at low pressure. Activity increased by 110% at low pressure versus a 239% increase at 350 MPa when the temperature was increased from 40 to 80 °C. Increasing pressure up to 350 MPa increased lipase activity while pressures greater than 350 MPa maintained or decreased lipase activity. Activation volume (ΔV) appeared negative between ambient pressure and 200 MPa in contrast to a positive ΔV between 300 and 600 MPa. Apparent ΔV was 14.3 ± 1.7 or 15.2 ± 2.2 cm3 mol?1 at 40 or 80 °C, respectively, between 300 and 500 MPa.  相似文献   

18.
Chrysoperla genanigra Freitas is a common green lacewing associated with melon pests in the Northeastern Brazil. All life stages of this recently described species were studied under a range of constant temperature conditions (17, 21, 25, 29, 33, 35 and 37 °C), a photoperiod of 12 h:12 h (L:D) and 70 ± 10% relative humidity. Adults of C. genanigra were fed on a diet consisting of a 1:1 (v/v) mixture of brewer’s yeast and honey, while larvae were provided with eggs of Sitotroga cerealella (Olivier) ad libitum. The duration of preimaginal development of the species was inversely proportional to temperature and ranged from approximately 63 days at 17 °C to 15 days at 35 °C. The percentage of adult emergence varied from 6.7% at 17 °C to 76.7% at 25 °C, although no larvae were able to complete development at 37 °C. The lower thermal threshold for total preimaginal development was approximately 10.8 °C and the thermal requirement was 336.7 degree-days. Egg production, along with the longevity of both males and females, were significantly affected by temperature. It is concluded that the best temperature for rearing C. genanigra is 25 °C, with the lowest preimaginal mortality and the highest egg production (992.7 eggs/female).  相似文献   

19.
The thermoregulatory behavior of the giant keyhole limpet Megathura crenulata was determined in a horizontal thermal gradient during the day at 18.9 °C and 18.3 °C for the night. The final preferendum determined for giant keyhole limpets was of 18.6±1.2 °C.Limpets' displacement velocity was 10.0±3.9 cm h−1 during the light phase and 8.4±1.6 cm h−1 during the dark phase. The thermotolerance (measured as CTMax at 50%) was determined in a keyhole limpet in three acclimation temperatures 17, 20, and 23 °C. Limpets were subjected to water increasing temperatures at a rate of 1 °C every 30 min, until they detached from the substrate. The critical thermal maximum at 50% was 27.2, 27.9 and 28.3 °C respectively.  相似文献   

20.
Animals that can be active both during day and night offer unique opportunities to identify factors that influence activity pattern. By experimental manipulations of temperatures under constant photoperiod, we aimed to determine if emergence, activity and thermoregulatory behaviour of juvenile tuatara (Sphenodon punctatus) varied at different temperatures (20 °C, 12 °C and 5 °C). To help clarify its activity pattern, we compared tuatara with two lizard species endemic of the South Island of New Zealand for which activity pattern is known and clearly defined: the nocturnal common gecko Woodworthia “Otago/Southland” and the diurnal McCann׳s skink Oligosoma maccanni. Tuatara showed similar responses to both species of lizards. Similar to the diurnal skinks, tuatara emerged quickly at 20 °C and 12 °C while nocturnal geckos took more time to emerge. Like nocturnal geckos, tuatara continued to be active at 5 °C, but only during the day. Interestingly, tuatara shifted from diurno-nocturnal activity at 20 °C and 12 °C to being strictly diurnal at 5 °C. We suggest that this temperature-dependent strategy maximises their survival during cold periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号