首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
During phytoplankton monitoring in the Beagle Channel (≈54°52′ S, 67°32′ W) a previously undetected Alexandrium species was observed in coincidence with mouse bioassay toxicity. Detailed thecal plates analysis using epifluorescence and scanning electron microscopy revealed the presence of the Alexandrium ostenfeldii species complex, showing a mixture of the diagnostic features usually used to discriminate between the morphospecies A. ostenfeldii and A. peruvianum. Cells of the A. ostenfeldii complex were commonly observed during spring after the main annual diatom bloom, when temperatures and salinities were respectively around 7.5–10 °C and 30–30.5 psu, and nutrients showed a seasonal decrease. Toxin analysis by liquid chromatography–mass spectrometry revealed the production of 13-desmethyl spirolide C and 20-methyl spirolide G in cell cultures. The cellular contain of spirolides during exponential phase growth was 0.5906 ± 0.0032 and 0.1577 ± 0.0023 pg cell−1 for 13-desMe-C and 20-Me-G, respectively. A third unknown compound, with a structure resembling that of spirolides was also detected in culture. Moreover, an additional compound with a similar m/z (692) than that of 13-desMe-C but presenting a higher retention time (Rt = 40.5 min) was found in high proportions in mussel samples. PSP toxins were present at low concentration in mussels but were not detected in cultures. These results extend the world-wide distribution of toxic strains of the A. ostenfeldii complex to the Beagle Channel (southern South America), where toxic events have been traditionally linked to the presence of Alexandrium catenella. This is the first confirmed occurrence of spirolides in mussels and plankton from Argentina, which highlights the importance of monitoring these toxins and their producing organisms to protect public health and improve the management of shellfish resources.  相似文献   

2.
Beginning in April 2002, three species of Florida puffer fish from around the state of Florida, USA were monitored for the presence of saxitoxin (STX). In total, 873 southern (Sphoeroides nephelus), 171 checkered (S. testudineus), and 53 bandtail (S. spengleri) puffer fish were collected between 2002 and 2006 from eight regions: Jacksonville, the Indian River Lagoon, Tequesta, the Florida Keys, Charlotte Harbor, Tampa Bay, Cedar Key, and Apalachicola. Emphasis was placed on collecting specimens from the Indian River Lagoon (IRL), where recreational harvesting of puffer fish led to 28 cases of saxitoxin puffer fish poisoning (SPFP) between January 2002 and May 2004. Southern puffer fish from the northern IRL routinely contained the highest concentrations of STX, with average levels in the skin of 1787 μg STXequiv./100 g tissue. Elevated concentrations were also found in the muscle (1102 μg STXequiv./100 g), gut contents (539 μg STXequiv./100 g), gonads (654 μg STXequiv./100 g), and liver (214 μg STXequiv./100 g). Lower, yet significant (above the action limit of 80 μg STXequiv./100 g tissue), concentrations of STX were also detected in the skin (599 μg STXequiv./100 g), muscle (233 μg STXequiv./100 g), gut contents (197 μg STXequiv./100 g), and gonads (239 μg STXequiv./100 g) of southern puffer fish from Tequesta in the southern IRL, as well as in the gonads (122 μg STXequiv./100 g) of Jacksonville southern puffer fish and the skin (265 μg STXequiv./100 g) of Tampa Bay southern puffer fish. STX concentrations above the action limit were also found in the skin of bandtail puffer fish from the IRL (620 μg STXequiv./100 g), Tequesta (374 μg STXequiv./100 g), and the Florida Keys (230 μg STXequiv./100 g). Checkered puffer fish collected from the IRL, Tequesta, and the Florida Keys on average were nontoxic, containing STX levels below the action limit in all tissues.  相似文献   

3.
Alexandrium ostenfeldii is an emerging harmful algal bloom species forming a global threat to coastal marine ecosystems, with consequences for fisheries and shellfish production. The Oosterschelde estuary is a shallow, macrotidal and mesotrophic estuary in the southwest of The Netherlands with large stocks of mussels, oysters, and cockles. These shellfish stocks were threatened by a recent A. ostenfeldii bloom in the Ouwerkerkse Kreek, which is a brackish water creek discharging water into the Oosterschelde. Little is yet known about the characteristics of the A. ostenfeldii population in this creek. We therefore isolated 20 clones during an A. ostenfeldii bloom in 2013, and characterized these clones on their growth and toxin profile in their exponential growth phase. The cyclic imines were identified by comparison of A. ostenfeldii extracts with the retention time and CID spectra of standard solutions, or with published CID spectra. We furthermore assessed the allelochemical potency and phylogeny of a selection of 10–12 clones. Morphology and molecular phylogeny showed that all clones belong to Group 1 of A. ostenfeldii. All clones showed comparable growth rates of on average 0.22 ± 0.03 d−1. During exponential growth, they all produced a unique combination of paralytic shellfish poisoning toxins, spirolides and gymnodimines, of which particularly the latter showed a high intra-specific variability, with a 25-fold difference between clones with the lowest and highest cell quota. Furthermore, the selected 12 clones showed high allelopathic potencies with EC50 values based on lysis assays against the cryptophyte Rhodomonas salina between 212 and 525 A. ostenfeldii cells mL−1. Lytic activities were lower for cell extracts, indicating an important extracellular role of these compounds. A high intra-specific variability may add to the success of genotypically diverse A. ostenfeldii blooms, and make populations resilient to changes in environmental and climatic conditions.  相似文献   

4.
Routine sampling of the water quality stations in the New River Estuary (Jacksonville, North Carolina, USA) during November 2004 revealed the presence of a previously unidentified dinoflagellate. Preliminary observations of its morphology suggested it to be consistent with that of Alexandrium peruvianum (Balech et Mendiola) Balech et Tangen. Observations using brightfield, epifluorescence and scanning electron microscopy confirmed the diagnostic thecal plates to be those of A. peruvanium. Clonal cultures established from cells isolated from the New River Estuary samples were also used for further studies of morphology and for the presence of toxins. Thecal morphology was consistent with that described by Balech clearly separating it from the sister species Alexandrium ostenfeldii. Three classes of toxins were detected from these cultures. An erythrocyte lysis assay (ELA) was used to confirm the presence of hemolytic toxins in A. peruvianum cultures. A cellular EC50 for lysis was 1.418 × 104 cells, well within the range the maximal cells densities found in the New River and more potent when compared on a cellular basis with Prymnesium parvum. Another toxin class detected in A. peruvianum cultures was the fast acting 13-desmethy C and D spirolides also produced by the sister species A. ostenfeldii. The last toxin type detected in the A. peruvianum cultures was the paralytic shellfish toxins, GTX 2, 3, B1, STX and C1,2. These findings expand the geographic range of occurrence for A. peruvianum in the U.S. to be much greater than previously considered. The morphological characters agreed with previously reported molecular data in separating A. peruvianum from A. ostenfeldii. It is also the first confirmed report that this species produces PSP toxins, spirolides and naturally occurring hemolytic substances. In light of these findings additional attention is needed for the detection of Alexandrium species in all coastal waters of the U.S. This added effort will enhance the evaluation of the relative impacts of the species to shellfish safety and bloom surveillance.  相似文献   

5.
The dinoflagellate Alexandrium ostenfeldii is a well-known harmful algal species that can potentially cause paralytic shellfish poisoning (PSP). Usually A. ostenfeldii occurs in low background concentrations only, but in August of 2012 an exceptionally dense bloom of more than 1 million cells L−1 occurred in the brackish Ouwerkerkse Kreek in The Netherlands. The A. ostenfeldii bloom produced both saxitoxins and spirolides, and is held responsible for the death of a dog with a high saxitoxin stomach content. The Ouwerkerkse Kreek routinely discharges its water into the adjacent Oosterschelde estuary, and an immediate reduction of the bloom was required to avoid contamination of extensive shellfish grounds. Previously, treatment of infected waters with hydrogen peroxide (H2O2) successfully suppressed cyanobacterial blooms in lakes. Therefore, we adapted this treatment to eradicate the Alexandrium bloom using a three-step approach. First, we investigated the required H2O2 dosage in laboratory experiments with A. ostenfeldii. Second, we tested the method in a small, isolated canal adjacent to the Ouwerkerkse Kreek. Finally, we brought 50 mg L−1 of H2O2 into the entire creek system with a special device, called a water harrow, for optimal dispersal of the added H2O2. Concentrations of both vegetative cells and pellicle cysts declined by 99.8% within 48 h, and PSP toxin concentrations in the water were reduced below local regulatory levels of 15 μg L−1. Zooplankton were strongly affected by the H2O2 treatment, but impacts on macroinvertebrates and fish were minimal. A key advantage of this method is that the added H2O2 decays to water and oxygen within a few days, which enables rapid recovery of the system after the treatment. This is the first successful field application of H2O2 to suppress a marine harmful algal bloom, although Alexandrium spp. reoccurred at lower concentrations in the following year. The results show that H2O2 treatment provides an effective emergency management option to mitigate toxic Alexandrium blooms, especially when immediate action is required.  相似文献   

6.
In the past years, late summer blooms of the bioluminescent dinoflagellate Alexandrium ostenfeldii have become a recurrent phenomenon in coastal waters of the central and Northern Baltic Sea. This paper reports exceptionally high cell concentrations (105 to 106 cells L?1) of the species found during bioluminescent blooms in 2003 and 2004 in a shallow embayment of the Åland archipelago at the SW coast of Finland. Clonal cultures were established for morphological, molecular, toxicological and ecophysiological investigations to characterize the Finnish populations and compare them to other global A. ostenfeldii isolates. The Finnish isolates exhibited typical morphological features of A. ostenfeldii such as large size, a prominent ventral pore and an orthogonally bent first apical plate. However, unambiguous differentiation from closely related Alexandrium peruvianum was difficult due to considerable variation of sulcal anterior plate shapes. The Finnish strains were genetically distinct from other isolates of the species, but phylogenetic analyses revealed a close relationship to isolates from southern England and an A. peruvianum morphotype from the Spanish Mediterranean. Together these isolates formed a distinct clade which was separated from a clade containing other Northern European, North American and New Zealand populations. Toxin analyses confirmed the presence of the PSP toxins GTX2, GTX3 and STX in both Finnish isolates with GTX3 being the dominant toxin. Total relative PSP toxin contents were moderate, ranging from approximately 6 to 15 fmol cell?1 at local salinities of 5 and 10 psu, respectively. Spirolides were not detected. Salinity tolerance experiments showed that the Finnish isolates were well adapted to grow at the low salinities of the Baltic Sea. With a salinity range of approximately 6 to 20–25 psu, Baltic populations are physiologically distinct from their marine relatives. Vigorous production of different cyst types in the cultures suggest that cysts may play a crucial role in the survival and retainment of A. ostenfeldii populations in the Baltic Sea.  相似文献   

7.
《Harmful algae》2010,9(6):926-937
This work describes and compares the seasonal variability of toxin profiles and content, estimated by LC–MS analyses, in picked cell of Dinophysis acuta Ehrenberg, in plankton concentrates rich in this species, and in extracellular lipophilic toxins collected by adsorbent resins during weekly sampling in a Galician ría (Western Iberia) from October 2005 to January 2006. Picked cells of D. acuta—which exhibited a fairly stable OA:DTX2 ratio, close to 3:2, but a variable okadaates:PTX2 ratio—showed a 9-fold variation in cell toxin quota, which was partly related to cellular volume, with maximum values (19 pg cell−1) observed during the exponential decline of the population. Large differences in toxin profiles and content were observed between picked cells and plankton concentrates (up to 73 pg cell−1 in the latter), that were most conspicuous after the bloom decline. The toxin profile of picked cells was more similar to that observed in the adsorbent resins than to the profiles of plankton concentrates. Their continued detection several weeks after the disappearance of Dinophysis spp. indicates that these toxins may take a long time to be degraded. It is concluded that analyses of picked-cells are essential to determine the contribution of each species of Dinophysis to a toxic outbreak. Estimates of cellular toxin content from plankton concentrates can lead to considerable overestimates after Dinophysis blooms decay due to extracellular toxins that persist in the water column, possibly bound to organic aggregates and detritus, and are retained (>0.22 μm) in the filters.  相似文献   

8.
A high spatial resolution sampling of Alexandrium pacificum cysts, along with sediment characteristics (% H2O, % organic matter (OM), granulometry), vegetative cell abundance and environmental factors were investigated at 123 study stations in Bizerte Lagoon (Tunisia). Morphological examination and ribotyping of cells obtained from a culture called ABZ1 obtained from a cyst isolated in lagoon sediment confirmed that the species was A. pacificum. The toxin profile from the ABZ1 culture harvested during exponential growth phase was simple and composed of the N-sulfocarbamoyl toxins C1 (9.82 pg toxin cell−1), the GTX6 (3.26 pg toxin cell−1) and the carbamoyl toxin Neo-STX (0.38 pg toxin cell−1). The latter represented only 2.8% of the total toxins in this strain.High abundance of A. pacificum cysts correlated with enhanced percentages of water and organic matter in the sediment. In addition, sediment fractions of less than 63 μm were examined as a favorable potential seedbed for initiation of future blooms and outbreaks of A. pacificum in the lagoon. A significant difference in the cyst distribution pattern was recorded among the lagoon's different zones, with the higher cyst abundance occurring in the inner waters. Also, no correlation due to the specific hydrodynamics of the lagoon was observed in the spatial distribution of A. pacificum cysts and vegetative cells.  相似文献   

9.
The occurrence of freshwater harmful algal bloom toxins impacting the coastal ocean is an emerging threat, and the potential for invertebrate prey items to concentrate toxin and cause harm to human and wildlife consumers is not yet fully recognized. We examined toxin uptake and release in marine mussels for both particulate and dissolved phases of the hepatotoxin microcystin, produced by the freshwater cyanobacterial genus Microcystis. We also extended our experimental investigation of particulate toxin to include oysters (Crassostrea sp.) grown commercially for aquaculture. California mussels (Mytilus californianus) and oysters were exposed to Microcystis and microcystin toxin for 24 h at varying concentrations, and then were placed in constantly flowing seawater and sampled through time simulating riverine flushing events to the coastal ocean. Mussels exposed to particulate microcystin purged the toxin slowly, with toxin detectable for at least 8 weeks post-exposure and maximum toxin of 39.11 ng/g after exposure to 26.65 μg/L microcystins. Dissolved toxin was also taken up by California mussels, with maximum concentrations of 20.74 ng/g after exposure to 7.74 μg/L microcystin, but was purged more rapidly. Oysters also took up particulate toxin but purged it more quickly than mussels. Additionally, naturally occurring marine mussels collected from San Francisco Bay tested positive for high levels of microcystin toxin. These results suggest that ephemeral discharge of Microcystis or microcystin to estuaries and the coastal ocean accumulate in higher trophic levels for weeks to months following exposure.  相似文献   

10.
The dynamics of Dinophysis acuminata and its associated diarrhetic shellfish poisoning (DSP) toxins, okadaic acid (OA) and dinophysistoxin-1 (DTX1) as well as pectenotoxins (PTXs), were investigated within plankton and shellfish in Northport Bay, NY, USA, over a four year period (2008–2011). Over the course of the study, Dinophysis bloom densities ranged from ~104 to 106 cells L−1 and exceeded 106 L−1 in 2011 when levels of total OA, total DTX1, and PTX in the water column were 188, 86, and 2900 pg mL−1, respectively, with the majority of the DSP toxins present as esters. These cell densities exceed – by two orders of magnitude – those previously reported within thousands of samples collected from NY waters from 1971 to 1986. The bloom species was positively identified as D. acuminata via scanning electron microscopy and genetic sequencing (cox1 gene). The cox1 gene sequence from the D. acuminata populations in Northport Bay was 100% identical to D. acuminata from Narragansett Bay, RI, USA and formed a strongly supported phylogenetic cluster (posterior probability = 1) that included D. acuminata and Dinophysis ovum from systems along the North Atlantic Ocean. Shellfish collected from Northport Bay during the 2011 bloom had DSP toxin levels (1245 ng g−1 total OA congeners) far exceeding the USFDA action level (160 ng g−1 total OA of shellfish tissue) representing the first such occurrence on the East Coast of the U.S. D. acuminata blooms co-occurred with paralytic shellfish poisoning (PSP) causing blooms of Alexandrium fundyense during late spring each year of the study. D. acuminata cell abundances were significantly correlated with levels of total phytoplankton biomass and Mesodinium spp., suggesting food web interactions may influence the dynamics of these blooms. Given that little is known regarding the combined effects of DSP and PSP toxins on human health and the concurrent accumulation and depuration of these toxins in shellfish, these blooms represent a novel managerial challenge.  相似文献   

11.
Toxin producing dinoflagellates of the genus Alexandrium Halim represent a risk to Arctic environments and economies. This study provides the first record and a characterization of Alexandrium ostenfeldii in the western Arctic. During a cruise along the coasts of western and southern Greenland 36 isolates of the species were established in August 2012. Plankton samples taken at three different stations from the upper water layer at water temperatures of approx. 4–7 °C, contained low amounts of A. ostenfeldii. Sequencing of SSU and ITS-LSU rDNA and subsequent phylogenetic analyses identified all Greenland strains as members of a NW Atlantic spirolide producing phylogenetic clade. Molecular results were confirmed by morphological features typical for this group (=Group 5 of a recent ITS-LSU phylogeny of A. ostenfeldii). The Greenland isolates did not contain either Paralytic Shellfish Poisoning toxins or gymnodimines, but produced several spirolides. Altogether 12 different analogs were detected, of which only SPX-1, C, 20-meG and H have been described earlier. The remaining 8 spirolides have not been identified so far. Some of them were found to dominate the toxin profiles of a number of isolates. Among the 36 investigated strains spirolide composition varied considerably, particularly isolates from western Greenland (Station 516) exhibited a high diversity of analogs, with different profiles in nearly all 22 isolates. All of the 34 tested Greenland strains showed considerable lytic capacity when exposed to Rhodomonas salina.  相似文献   

12.
The production of diarrhetic shellfish poisoning toxins (okadaic acid analogues and other lipophilic toxins) by a culture of Dinophysis acuminata, fed with the autotrophic ciliate Myrionecta rubra, was confirmed by LC–MS analysis, and the toxin profile compared with that in the field assemblage of the same species. The growth response of D. acuminata to the density of the food organism was also examined in laboratory experiments. In semi-continuous culture experiments, the growth rates of D. acuminata increased with increasing density of M. rubra and a maximum growth rate of 0.67 per day was calculated. In batch culture experiments; the cellular content of PTX2 and DTX1 were 14.7–14.8 and 2.5–4.8 pg cell?1, respectively. Okadaic acid, dinophysistoxin-3, pectenotoxin-1, pectenotoxin-6, yessotoxin (YTX) and 45-OHYTX were not detected. PTX2 was detected (cellular toxin content: 22 pg cell?1), but DTX1 was not detected, in an extract of D. acuminata collected from natural seawater at the same location where the cultured D. acuminata specimens were isolated. These results strongly suggest that D. acuminata produces these toxins during cell growth and that environmental factors influence variations in the toxin composition and specific cellular toxicity.  相似文献   

13.
Gymnodinium catenatum, a dinoflagellate species with a global distribution, is known to produce paralytic shellfish poisoning (PSP) toxins. The profile of toxins of G. catenatum is commonly dominated by sulfocarbamoyl analogs including the C3 + 4 and GTX6, which to date has no commercial certified reference materials necessary for their quantification via chemical methods, such as liquid chromatography. The aim of this study was to assess the presence of C3 + 4 and GTX6 and their contribution to shellfish toxicity. C3 + 4 and GTX6 were indirectly quantified via pre-column oxidation liquid chromatography with fluorescence detection after hydrolysis conversion into their carbamate analogs. Analyses were carried out in mussel samples collected over a bloom of G. catenatum (>63 × 103 cells l−1) in Aveiro lagoon, NW Portuguese coast. Concentration levels of sulfocarbamoyl toxin analogs were two orders of magnitude higher than decarbamoyl toxins, which were in turn one order of magnitude higher than carbamoyl toxins. Among the sulfocarbamoyl toxins, C1 + 2 were clearly the dominant compounds, followed by C3 + 4 and GTX6. The least abundant sulfocarbamoyl toxin was GTX5. The most important compounds in terms of contribution for sample toxicity were C1 + 2, which justified 26% of the PSP toxicity. The lesser abundant dcSTX constitutes the second most important compound with similar % of toxicity to C1 + 2, C3 + 4 and GTX6 were responsible for approximately 11% and 13%, respectively. The median of the sum of C3 + 4 and GTX6 was 27%. These levels reached a maximum of 60% as was determined for the sample collected closest to the G. catenatum bloom. This study highlights the importance of these low potency PSP toxin analogs to shellfish toxicity. Hydrolysis conversion of C3 + 4 and GTX6 is recommended for determination of PSP toxicity when LC detection methods are used for PSP testing in samples exposed to G. catenatum.  相似文献   

14.
Defined experimental regimes were used to determine the effects of nutrient limitation on the toxicity of Alexandrium peruvianum in batch culture. Subsamples for cell counts and spiroimine analysis at six day intervals were used to investigate the concentrations and composition of these compounds throughout growth. An erythrocyte lysis assay for hemolytic activity was performed on cell pellets and supernatants also collected every six days over the entire growth period from all treatments. From the data, growth rates, cellular spiroimine quotas and effective concentration-fifty (EC50s) for cellular and supernatant associated hemolytic activity were calculated. Phosphate limitation was identified as a key regulator of toxicity in this species, yielding maximum values of 54.1 pg cell−1 for 13-desmethyl spirolide C, 96.4 pg cell−1 for 12-methylgymnodimine and a potent hemolytic EC50 value of 7.1 × 103 cells. The concentrations of spiroimines detected in A. peruvianum among various treatments, in addition to a unique profile of paralytic shellfish poisoning toxins, is unique in the body of microalgal literature. Because of the multiple toxin arsenal produced by this organism, the evaluation of a single toxin clearly would have underestimated the potential virulence and significance of this clone. This study provides the first evidence that growth and toxin production of A. peruvianum are influenced by altered nutrient ratios.  相似文献   

15.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

16.
Dinophysis spp. produce diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins. The extent to which the dinoflagellate cells retain their toxicity in stationary phase, a period when cells are most toxic, and their transition into cell death is not known. Here we present results on the production, recycling, retention, and release of toxins from a monoculture of Dinophysis acuminata during these two important stages. Once stationary phase was reached, cultures were divided between light and dark treatments to identify if light influenced toxin dynamics. Light was required for long-term cell maintenance (>2 months) of D. acuminata in the absence of prey, however, in the dark, cells in stationary phase survived on reserves alone for four weeks before beginning to decline. Cells maintained relatively constant levels of intracellular OA (0.39 ± 0.03 pg/cell, 0.44 ± 0.05 pg/cell), DTX1 (0.45 ± 0.09 pg/cell, 0.64 ± 0.10 pg/cell) and PTX2 (10.4 ± 1.4 pg/cell, 11.0 ± 1.9 pg/cell) in the dark and light treatments, respectively, throughout stationary phase and into culture decline. Toxin production was only apparent during late exponential and early stationary growth when cells were actively dividing. In general, the concentration of dissolved (extracellular) toxin in the medium significantly increased upon culture aging and decline; cells did not appear to be actively or passively releasing toxin during stationary phase, but rather extracellular release was likely a result of cell death. Light availability did not have an apparent effect on toxin production, quotas, or intracellular vs. extracellular distribution. Together these results suggest that a bloom of D. acuminata would retain its cellular toxicity or potency as long as the population is viable, and that cells under conditions of low light (e.g., at the boundary or below euphotic zone) and/or minimal prey could maintain toxicity for extended periods.  相似文献   

17.
The uptake and accumulation of microcystin-LR (MC-LR) in the shrimp Palaemonetes argentinus was investigated using both laboratory and field assays. Shrimps were exposed in aquarium during 1, 2, 3 and 7 days to 1, 10 and 50 μg L−1 MCLR. Accumulation (0.7 ± 0.2 μg MC-LR g−1) was observed after three days exposures to 50 μg L−1 toxin. Then, shrimps were relocated in fresh water (free of MCLR) to verify the detoxification dynamic, showing a drop to 0.18 ± 0.01 μg MCLR g−1 after three days. The activity of glutathione-S-transferase, measured in the microsomal fraction (mGST), was significantly increased during the exposure period, with further increment during the detoxification period. Furthermore, cytosolic GST (sGST) and glutathione reductase (GR) increased their activities during detoxification, while inhibition was observed for catalase (CAT) with no significant changes for glutathione peroxidase (GPx). Current results suggest that GSH conjugation could be an important MC detoxification mechanism in P. argentinus and that MCLR induce oxidative stress in this shrimp.Field exposures were carried out in San Roque Reservoir (Córdoba, Argentina) after a cyanobacteria bloom. Nodularin (Nod) presence was measured for the first time in this waterbody (0.24 ± 0.04 μg L−1), being the first report of Nod in South America freshwaters. Nod was also detected in Palaemonetes argentinus (0.16 ± 0.03 μg g−1) after three weeks of exposure in this reservoir, with the concomitant activation of mGST, sGST and CAT.Although internal doses of Nod were low throughout the exposure, they were enough to cause biochemical disturbances in Palaemonetes argentinus.Further laboratory studies on Nod accumulation and antioxidant responses in Palaemonetes argentinus are necessary to fully understand these field results. P. argentinus should be considered a potential vector for transferring cyanotoxins to higher trophic levels in aquatic environments.  相似文献   

18.
19.
The variability of toxigenic phytoplankton and the consequent uptake and loss of toxins by the mussel Choromytilus meridionalis was investigated in the southern Benguela at the event scale (3–10 days) in response to the upwelling–downwelling cycle. Phytoplankton and mussel samples were collected daily (20 March–11 April 2007) from a mooring station (32.04°S; 18.26°E) located 3.5 km offshore of Lambert's Bay, within the St Helena Bay region. Rapid changes in phytoplankton assemblages incorporated three groups of toxigenic phytoplankton: (1) the dinoflagellate Alexandrium catenella; (2) several species of Dinophysis, including Dinophysis acuminata, Dinophysis fortii, Dinophysis hastata and Dinophysis rotundata; and (3) members of the diatom genus Pseudo-nitzschia. Analysis of phytoplankton concentrates by LC–MS/MS or LC-FD provided information on the toxin composition and calculated toxicity of each group. Several additional in vitro assays were used for the analysis of toxins in mussels (ELISA, RBA, MBA for PSP toxins; and ELISA for DSP toxins). Good correspondence was observed between methods except for the MBA, which provided significantly lower (approximately 2-fold) estimates of PSP toxins. PSP and DSP toxins both exceeded the regulatory limits in Choromytilis meridionalis, but ASP toxins were undetected. Differences were observed in the composition of both PSP and DSP toxins in C. meridionalis from that of the ingested dinoflagellates (PSP toxins showed an increase in STX, C1,2, and traces of dcSTX and GTX1,4 and a decrease in NEO; DSP toxins showed an increased in DTX1, and traces of PTX2sa, and a decrease in OA). The rate of loss of PSP toxins following dispersal of the A. catenella boom was 0.12 d−1. Variation in the loss rates of different PSP toxins contributed to the change in toxin profile in C. meridionalis. Prediction of net toxicity in shellfish of the nearshore environment in the southern Benguela is limited due to rapid phytoplankton community changes, high variability in cellular toxicity, and the selective uptake and loss of toxins, and/or transformation of toxins.  相似文献   

20.
The paralytic shellfish toxin (PST) producing dinoflagellate Alexandrium ostenfeldii forms dense, recurrent blooms during summer in shallow coastal areas of the Baltic Sea. We studied the intra-population variability of its allelochemical potency and the responses of co-occurring and potentially competing dinoflagellates to the allelochemicals. The lytic activity of 10 northern Baltic A. ostenfeldii strains was evaluated by their EC50 values (i.e. the cell concentration yielding a 50% decline in cryptophyte density), which were found to vary between 236 and 1726 cells ml−1. When co-occurring dinoflagellates (Kryptoperidinium foliaceum, Levanderina fissa and Heterocapsa triquetra) were exposed to filtrate of A. ostenfeldii, short-term (<1 h) responses of the target species after an initial immobilization were species-specific. Almost all of the K. foliaceum cells formed cysts, L. fissa cells lost their cell shape and lysed, whereas H. triquetra cells shed their thecae. After 24 h, K. foliaceum had returned into vegetative cells and the number of immotile L. fissa and H. triquetra cells had significantly decreased. The results indicate that A. ostenfeldii can disturb the growth of competing dinoflagellates by excreting allelochemicals at bloom concentrations and that co-occurring species may develop efficient means to escape and recover from the allelochemicals, allowing them to coexist with A. ostenfeldii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号