首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
李鹏  田嘉  陆婷  罗淑萍  李疆 《西北植物学报》2015,35(11):2219-2226
为探明扁桃花药开裂前后壁层细胞形态变化,以鹰咀扁桃鳞片开裂期、小蕾期、大蕾期和盛花期的花蕾为研究材料,运用石蜡切片法结合铁苏木精染色法、考马斯亮蓝染色法、PAS染色法对花药壁层细胞进行染色;同时用Nikon SMZ-250体视显微镜拍摄花药开裂过程,观测花粉粒长、短轴长度。结果表明:(1)从鳞片开裂期到小蕾期,花粉粒的长、短轴长度都增大,多糖颗粒数量增多,绒毡层细胞完全消失,中层细胞和药隔处细胞逐渐溶解;药室内壁细胞切向长度增加幅度大于径向长度,内、外壁长度都增大,螺旋状纤维进一步形成;表皮细胞切向长度增加幅度大于径向长度。(2)从小蕾期到大蕾期花粉粒长、短轴长度明显增大,多糖颗粒持续增多;中层细胞和药隔处细胞大部分溶解;药室内壁细胞径向、切向长度持续增大,内壁长度增大、外壁长度趋于稳定,多糖颗粒数量减少,螺旋状纤维基本形成;表皮细胞切向减小幅度大于径向。(3)从大蕾期到花药半开裂,花粉粒长、短轴长度稍微增大;中层细胞和药隔处细胞完全溶解;药室内壁细胞切向长度持续增大,径向长度趋于稳定,内壁长度持续增大,外壁长度逐渐减小,多糖颗粒数量较少;表皮细胞切向、径向长度持续减小。(4)花药半开裂后,花粉粒长、短轴长度都减小;药室内壁细胞和表皮细胞切向、径向长度都减小;药室内壁细胞内、外壁长度减小并趋于接近,内壁长度减小趋势出现晚于外壁。研究认为,扁桃花药壁层细胞形态变化是花药开裂的基础,并与花药开裂密切相关。  相似文献   

2.
HUFFORD, L. D. & ENDRKSS, P. K., 1989. The diversity of anther structures and dehiscence patterns among Hamamelididae. This survey of anther structures and dehiscence patterns focuses on the range of diversity among extant Hamamelididae. The definition and structure of the anther stomium are considered in detail to provide a basis for characterizing dehiscence patterns. We are concerned particularly with the structural basis and distribution of so-called valvate dehiscence, which we define here as occurring only in those anthers that possess stomial bifurcations or markedly eccentric stomia. Valvate dehiscence is restricted to Trochodendrales and Hamamelidales among Hamamelididae, although some Hamamelidaceae possess only linear, not markedly eccentric stomia that lead to longitudinal dehiscence patterns. Anther forms are somewhat variable and do not appear to be highly correlated with stomial patterns, although stomial bifurcations occur most frequently in anthers with broad, thick connectives that extend for the full length (or nearly so) of the thecae. Valvate dehiscence usually occurs in anthers in which the pollen sacs are embedded in bulky superficial tissues. An evolutionarily secondary extension of the stomium around the thecal shoulders seems to have occurred in taxa with a nonextensive connective and may facilitate a broader anther opening in cases of longitudinal dehiscence. An endothecial-like connective hypodermis is a notable characteristic among examined 'Lower Hamamelididae' (except Disanthus) and is also present in Daphnipfiyllum and Eucommia. We hypothesize that this specialized connective hypodermis facilitates a broader opening of the anther.  相似文献   

3.
4.
Ubiquitin-conjugated compounds were localized in anthers and pistils of Nicotiana alata by immuno-cytochemistry. In young anthers, antibodies to ubiquitin bound to callose cell walls surrounding pollen mother cells and to organelles in the endothecium. At the freespore stage, antibodies bound to circular-cell cluster cells subtending the stomium and to organelles and cell walls of endothecial cells. Near anther dehiscence, locular material was labeled. In pistils, cell walls of stylar transmitting tissue were labeled in a beaded pattern. Antibodies bound to a thin layer surrounding ovules, to the lining of embryo sacs, to cytoplasm of eggs and synergids, and to starch grains in central cells. Sites of localization were tissue- and time-specific, suggesting a regulatory role for ubiquitin in development of reproductive structures in flowering plants.  相似文献   

5.
6.
Anther and pollen development in staminate and pistillate flowers of dioecious Melicoccus lepidopetalus (Sapindaceae) were examined by light and electron microscopy. Young anthers are similar in both types of flowers; they consist of epidermis, endothecium, two to four middle layers and a secretory tapetum. The microspore tetrads are tetrahedral. The mature anther in staminate flowers presents compressed epidermal cells and endothecium cells with fibrillar thickenings. A single locule is formed in the theca by dissolution of the septum and pollen grains are shed at two-celled stage. The mature anthers of pistillate flowers differ anatomically from those of staminate flowers. The epidermis is not compressed, the endothecium does not develop fibrillar thickenings, middle layers and tapetum are generally persisting, and the stomium is nonfunctional. Microspore degeneration begins after meiosis of microspore mother cells. At anthesis, uninucleate microspores and pollen grains with vegetative and generative nuclei with no cytokinesis are observed. Some pollen walls display an abnormal exine deposition, whereas others show a well formed exine, although both are devoid of intine. These results suggest that in the evolution towards unisexuality, the developmental differences of anther wall tissues and pollen grains between pistillate and staminate flowers might become more pronounced in a derived condition, such as dioecy.  相似文献   

7.
BACKGROUND AND AIMS: Tissue desiccation is considered to be involved in anther opening, and it is agreed that environmental humidity affects its timing. Different sources of evidence suggest that the later steps of the process (i.e. stomium opening and outward wall bending) are regulated in different ways. Anther opening was studied in Allium triquetrum under four regimes of relative humidity (RH) to analyse the effect of this parameter and to speculate about its possible regulation. METHODS: Anther histology was studied in cross-sections under a microscope. The times of visible anther opening and complete outward wall bending were recorded separately for each level of RH. Frequency distributions were plotted to express anther behaviour. KEY RESULTS: When a longitudinal stomium breaks the anther remains closed due to adherence of walls on each side of the stomium. Anther opening occurs when the adhering walls subsequently separate. Later, the walls shrink laterally and bend outward. The anthers of the inner whorl opened during the morning of the first day of anthesis, while those of the outer whorl opened during the afternoon. Low RH (20 %) did not cause any evident acceleration of anther opening, but it did cause delay and inhibition of the opening of some anthers in the outer whorl. High RH (55 and 98 %) caused different degrees of delay and also inhibition of anther opening, but most anthers opened within the expected range of time. The time taken for outward wall bending was shortened at 20 % RH. Anther wall outward bending was inhibited at 55 % and 98 % RH. CONCLUSIONS: Anther opening occurred at a specific moment of anther development, separated in time from stomium breakage, and seemed related to dehydration caused by reabsorption of water by contiguous tissues. Outward bending of the wall was facilitated by evaporation. Anther opening and anther wall outward bending seemed to be regulated differently in relation to water control.  相似文献   

8.
The male sterile mutant, ms35 , of Arabidopsis thaliana was produced by X-irradiation of seeds. The mutant produces fertile pollen, but is male sterile because the anthers do not dehisce. Anther development in ms35 plants occurs as in wild-type Arabidopsis until shortly after microspores are released from meiotic tetrads. Thereafter, in the wild type, bands of lignified, cellulosic secondary wall thickenings are laid down around the cells of the anther endothecium. In contrast, wall thickenings are not formed in the endothecium of the ms35 mutant. Development of other lignified tissues, for example the vascular tissue of the stamen, occurs normally in ms35 plants. In mutant anthers, as pollen maturation is completed, the stomium is cleaved but the anther wall does not retract to release pollen. The block in anther dehiscence in ms35 plants is specifically correlated with the absence of endothecial wall thickenings. The ms35 mutation represents the first genetic evidence in support of the proposed role of the endothecium in anther dehiscence. The ms35 gene was mapped to the top arm of chromosome 3 ( hy2 -(4.17±2.31 cM)- ms35 -(32.14±5.45 cM)- gl1 ).  相似文献   

9.
In this study, polysaccharide and RNA contents of anthers were investigated on different phases of sporogenesis by using light microscopy techniques from histological and cytological point of view in Leucojum aestivum. Paraffin and semi-thin sections of anthers were stained with toluidine blue and PAS. Anthers were tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer and glandular tapetum. During one nucleated microspore and mature pollen phase microspores and tapetum cells began to degenerate and they were become very rich of RNA in L. aestivum. And also RNA content was increased in endothecium and middle layer cells except the epidermis cells of anther wall. An increase in RNA content indicates cell activation. Polysaccharides were not seen in young anther wall but they were seen in older ones. They were generally condensed in the cell walls and especially in the cell walls of vascular bundles of connective tissue. This could be thought that insoluble polysaccharides were used in metabolic events in early developmental stages. Appearance of polysaccharides in late phases was indicated that polysaccharides were used in the formation of cuticule and differentiation of endothelium cell walls.  相似文献   

10.
The floral anatomy of Cephalostemon, Monotrema, Rapatea, Spathanthus, and Stegolepis was studied for taxonomic purposes. All species studied share colleters between the floral parts; sepals, petals, anthers, and style covered by an ornamented cuticle; short epidermal cells with sinuous walls on the abaxial surface of the petals; tetrasporangiate anthers with phenolic idioblasts in the epidermis; endothecium with spiral thickenings; incompletely septate ovary; and anatropous, bitegmic ovules. The floral anatomy is useful not only for characterizing the family, but also for delimiting the subfamilies and genera. Sepals with silica bodies in the epidermal cells; mature anther wall composed of epidermis, endothecium, and middle layer; absence of phenolic idioblasts in the sepals, filaments, and ovary; and stylar epidermal cells with thickened external periclinal wall support Rapateoideae. Cephalostemon and Rapatea show a great number of similarities, corroborating their close relationship indicated in the phylogenetic analyses of the family. Monotrema shares few characters with the genera of Rapateoideae, corroborating its placement in Monotremoideae. Stegolepis shows several distinctive characters, probably related to the greater diversity found in this genus.  相似文献   

11.
In this paper on the flower mechanics of the grasses, the openingmechanism of the maize anther is studied. Both the septum betweeneach two locules and the stomium of these porate-dehiscing anthersappear to be opened due to lysis of the middle lamellae of theircells. Additional mechanical force of the expanding pollen mightbe necessary to completely dissociate the parenchyma cells ofthe septum. A number of hours before anthesis the anther isstructurally able to dehisce. At anthesis the dehydrating endotheciumcells bend the locule walls bordering the pore in outward direction.Presumably evaporation is not the only cause for this dehydration. Poaceae; Zea mays ; flower; anther; dehiscence; endothecium; pollen  相似文献   

12.
Melastomataceae have porate anthers. However, unlike Solanaceae and many monocots, in which the poricidal dehiscence depends on the presence of a mechanical layer (often the endothecium), most members of Melastomataceae have no evident specialized layer related to the poricidal opening. The goal of this study was to characterize the tissues that form the apical pore of the anther in 10 Miconia species, which may help to understand the nearly unknown mechanism of anther dehiscence in this genus, considered to be one of the largest and most diverse New World genera. Before anthesis, the apical pores of all of the species are closed by a uniseriate epidermis, the cells of which lack a cuticle. In contrast, the epidermis of the remainder of the anther is covered by a thick, ornamented cuticle. Among Myrtales, the Melastomataceae form a clade with Alzateaceae, Crypteroniaceae and Penaeaceae, almost all of which have anthers with endothecium lacking wall thickenings. In these families, the endothecium may or may not be present in the mature anther, with degenerating cells in the latter case. Anther dehiscence does not depend on the endothecium as the mechanical layer, and this process is still not well understood. However, in the Miconia species studied here, the cuticle may prevent tissue dehydration, and the pore opening seems to be due to the passive process of dehydration taking place only in the pore region due to the absence of the cuticle.  相似文献   

13.
14.
ENDRESS, P. K. & HUFFORD, L. D., 1989. The diversity of stamen structures and dehiscence patterns among Magnoliidae . Structure of stamens, particularly the patterns of anther dehiscence were studied over a wide range of families of the Magnoliidae with emphasis on the Magnoliales and Laurales as the most conservative orders of the angiosperms. Valvate dehiscence by proximal and distal stomial bifurcation was found (in addition to the already known Sarcandra and Polyalthia) for the first time in Degeneriaceae, Himantandraceae, Eupomatiaceae, in some additional Annonaceae, and in Peumus of the Monimioideae sensu lata. At least proximal bifurcations of the stomia occur in some Magnoliaceae and Ranunculaceae. An endothecial-like connective hypodermis was found (in addition to the already known Chloranthaceae and Magnoliaceae) in some Annonaceae, in Pseudowintera (Winteraceae), and in Thalictrum (Ranunculaceae). In the Annonaceae an endothecial-like connective hypodermis is partly correlated with valvate dehiscence by stomial bifurcations (as in many Hamamelididae). However, in many Magnoliidae stamens with this valvate pattern the anther is massive, especially in ‘laminar’ stamens, and the counterforce to the opening valves is therefore provided on the morphological and not on the histological level. Concomitant with valvate dehiscence by circular or elliptic flaps in the Laurales is often structural and functional dissocation of the two pollen sacs of a thcca, which is expressed by: (1) independent opening of each pollen sac, (2) lack of disruption of the interlocular zone of a theca, (3) frequent occurrence of asymmetry of the two pollen sacs of the theca, (4) frequent loss of one pollen sac per theca. In Berberidaceae with similar flaps asymmetry of the two pollen sacs of a theca is also common. These finds, together with the detection by paleobotanists of valvate anthers from the Lower Cretaceous, point to the probability that valvate anthers were more common in primitive angiosperms than previously thought.  相似文献   

15.
The developmental defects causing cytoplasmic male sterility in Petunia parodii are described in isonuclear fertile, sterile, and fertility-restored plants using both light- and scanning electron microscopy. The aberrant development of the sporogenous tissue and tapetal layer caused by the cytoplasmic male sterile cytoplasm in both Petunia hybrida and P. parodii nuclear backgrounds is similar in onset and progression. The degeneration of the sporogenous tissue and tapetal layer of sterile anthers is first apparent late in meiosis and results in highly abnormal sterile sporogenous tissue by tetrad stage of fertile anthers. The stomium and endothecium do not show major developmental differences between fertile and sterile anthers, but the inner connective tissue of sterile anthers contained calcium crystals not found at high abundance in fertile anthers. Ovoid bodies containing magnesium and phosphorus were seen only in the vascular bundles of fertile anthers. Material prepared for the scanning electron microscope by freeze drying showed better retention of fragile morphological features, while critical-point drying permitted examination of nonvolatile structures, such as cell walls.  相似文献   

16.
Receptor-like kinases (RLK) comprise a large gene family within the Arabidopsis genome and play important roles in plant growth and development as well as in hormone and stress responses. Here we report that a leucine-rich repeat receptor-like kinase (LRR-RLK), RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), is a key regulator of anther development in Arabidopsis. Two RPK2 T-DNA insertional mutants (rpk2-1 and rpk2-2) displayed enhanced shoot growth and male sterility due to defects in anther dehiscence and pollen maturation. The rpk2 anthers only developed three cell layers surrounding the male gametophyte: the middle layer was not differentiated from inner secondary parietal cells. Pollen mother cells in rpk2 anthers could undergo meiosis, but subsequent differentiation of microspores was inhibited by tapetum hypertrophy, with most resulting pollen grains exhibiting highly aggregated morphologies. The presence of tetrads and microspores in individual anthers was observed during microspore formation, indicating that the developmental homeostasis of rpk2 anther locules was disrupted. Anther locules were finally crushed without stomium breakage, a phenomenon that was possibly caused by inadequate thickening and lignification of the endothecium. Microarray analyses revealed that many genes encoding metabolic enzymes, including those involved in cell wall metabolism and lignin biosynthesis, were downregulated throughout anther development in rpk2 mutants. RPK2 mRNA was abundant in the tapetum of wild-type anthers during microspore maturation. These results suggest that RPK2 controls tapetal cell fate by triggering subsequent tapetum degradation, and that mutating RPK2 impairs normal pollen maturation and anther dehiscence due to disruption of key metabolic pathways.  相似文献   

17.
In the dehiscent anthers of Strelitzia reginae Ait. thread–like formations occur among the pollen grains. The threads are derived from specialized epidermal cells in the stomium region. These cells are liberated from the normal epidermal cells and from each other along their radial walls. By remaining attached to each other along the transversal walls the cells form multicellular threads.
Storage products occur in the thread–forming cells as starch grains and protein crystals in plastids. After their release the threads lose these products and are strongly vacuolated. Finally their cell content disintegrates.  相似文献   

18.
Mechanism of Anther Dehiscence in Rice (Oryza sativa L.)   总被引:4,自引:0,他引:4  
MATSUI  T.; OMASA  K.; HORIE  T. 《Annals of botany》1999,84(4):501-506
This paper presents a new explanation of the mechanism of antherdehiscence in rice during the period from floret opening topollen dispersal. The theca dehisced on the stomium in the apicalpart and the anther wall in the basal part of the large locule.Comparison of the anther dehiscence process under various airhumidity conditions showed that the process, until the splittingat the apical and basal parts, was a moisture-requiring processwhereas the widening of the splits in both parts was a desiccatoryprocess. Observation of the anther transverse section, revealedthe marked development of the U-shaped thick cell wall in theendothecium adjacent to these two splits. From these observations,the anther dehiscence mechanism may be explained as follows.At the time of anthesis, pollen grains swell rapidly in responseto the floret opening and cause the theca to bulge, rupturingthe septum. The pollen pressure combined with the inward bendingof the locule walls adjacent to the stomium causes splittingof the stomium in the apical part of the theca. At the sametime, the septum rupture extends to the bottom of the largelocule supported by the pollen pressure. After these processes,the locule walls adjacent to both splits straighten probablydue to their water loss. This straightening widens the splitsand the swollen pollen grains overflow from the widened splits.Copyright1999 Annals of Botany Company Anther dehiscence, Oryza sativa L., pollen grain swelling, rice, septum, stomium, theca.  相似文献   

19.
Potassium antimonate was used to locate Ca2+ in fertile and sterile anthers of a photoperiod-sensitive genic male-sterile rice (Oryza sativa L. japonica). During the development of fertile anthers, abundant calcium precipitates accumulated in the anther walls and on the surface of pollen grains and Ubish bodies at the late developmental stage of the microspore, but not in the cytoplasm of pollen grains. Following the accumulation of starch grains in pollen, calcium precipitates on pollen walls diminished and increased in parenchymatous cells of the connective tissue. In sterile anthers, calcium precipitates were abundant in the middle layer and endothecium, but not in the tapetum, as was found in fertile anthers. A special cell wall was observed between the tapetum and middle layer of sterile anthers that appeared to relate to distinctive calcium accumulation patterns and poor pollen wall formation in the loculi. The formation of different patterns of antimonate-induced calcium precipitates in the anthers of photoperiod-sensitive genic male-sterile rice indicates that anomalies in the distribution of calcium accumulation correlate with the failure of pollen development and pollen abortion. Received: 30 May 1997 / Accepted: 5 July 1997  相似文献   

20.
利用体视显微镜、半薄切片和超薄切片法对倒地铃(Cardiospermum halicacabum Linn.)雄花和假两性花开花过程及花药发育过程进行了观察和比较研究。结果显示:(1)花蕾发育早期,倒地铃雄花和假两性花的花蕾形态没有区别;花蕾发育后期,雄花雌蕊退化,假两性花雌蕊继续发育,花蕾外部形态出现差异;开花时雄花花药开裂,假两性花花药不开裂。(2)倒地铃雄花和假两性花均具四室花药,呈蝶形;花药壁细胞从外到内依次是表皮、药室内壁、中层(2层)和绒毡层;花药壁发育为基本型,绒毡层为单核分泌型,四分体为四面体型,花粉粒两核;开花时雄花和假两性花中层都有残留;小孢子液泡化时,绒毡层开始降解,两核花粉粒时,假两性花绒毡层降解较快。(3)雄花药室内壁次生加厚完全,裂口区发育,连接同侧花粉囊的连接组织降解,花药开裂;假两性花药室内壁次生加厚不完全,具唇形细胞,药隔细胞壁未降解,同侧花粉囊未连通,花药四室,不开裂;假两性花成熟花粉粒细胞质稀少,内壁不完整。本研究结果表明,倒地铃的雄花是由两性花在发育早期雌蕊停止发育形成的,假两性花则由两性花在发育晚期雄蕊功能退化造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号