首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues.  相似文献   

2.
Some properties of three interconvertible forms of rabbit muscle phosphofructokinase specifically eluted from DEAE-cellulose with 19 mM citrate in 0.1 M tris-phosphate buffer, pH 8,0 (I), with 0,3 M buffer (II) and 1.5 M NaCl (III) are compared. Forms I-III differ in specific activities, alpha-helices content and sedimentation properties. The kinetic behaviour of forms I and III in 25 mM glycylglycine-beta-glycerophosphate, pH 8.3, at inhibitory ATP concentrations is characterized by biphasic velocity versus fructose-6-phosphate concentration curves with nH = 1.0 and 2.3, but with different V and [S]0.5 for the respective forms. At pH 6.8 from I is characterized by the kinetic curves with a lag period, while form III--by that with a burst. Form I reveals negative cooperativity in initial and stationary velocities at low substrate concentrations. The stationary velocity of form III is characterized by negative cooperativity within the whole concentration range studied. At pH 7.0 both forms are inhibited by citrate according to the initial and stationary velocities; however, the Ki values are different. The complex kinetic behaviour of phosphofructokinase corresponds to its complex chromatographic and sedimentation behaviour. The multiplicity of the enzyme forms seems to be due to a complex set of its oligomers and conformers and a hysteretic type of transitions between them as well as to its phosphorylation and possible binding of ligands.  相似文献   

3.
1. On transferring Clostridium symbiosum glutamate dehydrogenase from pH 7 to assay mixtures at pH 8.8, reaction time courses showed a marked deceleration that was not attributable to the approach to equilibrium of the catalysed reaction. The rate became approximately constant after declining to 4-5% of the initial value. Enzyme, stored at pH 8.8 and assayed in the same mixture, gave an accelerating time course with the same final linear rate. The enzyme appears to be reversibly converted from a high-activity form at low pH to a low-activity form at high pH. 2. Re-activation at 31 degrees C upon dilution from pH 8.8 to pH 7 was followed by periodic assay of the diluted enzyme solution. At low ionic strength (5 mM-Tris/HCl), no re-activation occurred, but various salts promoted re-activation to a limiting rate, with full re-activation in 40 min. 3. Re-activation was very temperature-dependent and extremely slow at 4 degrees C, suggesting a large activation energy. 4. 2-Oxoglutarate, glutarate or succinate (10 mM) accelerated re-activation; L-glutamate and L-aspartate were much less effective. 5. The monocarboxylic amino acids alanine and norvaline appear to stabilize the inactive enzyme: 60 mM-alanine does not promote re-activation, and, as substrates at pH 8.8 for enzyme stored at pH 7, alanine and norvaline give progress curves showing rapid complete inactivation. 6. Mono- and di-nucleotides (AMP, ADP, ATP, NAD+, NADH, NADP+, CoA, acetyl-CoA) at low concentrations (10(-4)-10(-3) M) enhance re-activation at pH 7 and also retard inactivation at pH 8.8. 7. The re-activation rate is independent of enzyme concentration: ultracentrifuge experiments show no changes in molecular mass with or without substrates. 8. The activation-inactivation appears to be due to a slow pH-dependent conformational change that is sensitively responsive to the reactants and their analogues.  相似文献   

4.
"Biosynthetic" L-threonine dehydratase (EC 4.2.1.16) was purified to a homogeneous state with 29% yield of total activity from Escherichia coli K-12. The homogeneity of the enzyme was shown by polyacrylamide gel disc electrophoresis in the presence of dodecyl sulphate. The enzyme consisted of equal subunits having a molecular weight of about 57 000. The polyacrylamide gel disc electrophoresis has shown that the native enzyme consisted of a set of oligomeric forms. The multiplicity of molecular organization of the enzyme was reflected in complicated kinetic behaviour: at pH greater than 9 on the plots of initial reaction rate (v) versus initial substrate concentration ([S]o) there were four inflexion points (two intermediate plateaux), the position and deepness of which depended on enzyme concentration. At pH 8.3 on the v versus [S]o plots appeared two inflexion points (one intermediate plateu), the position of which practically did not depend on enzyme concentration in the reaction mixture, but strongly depended on the enzyme concentration in the stock solution. Repeated polyacrylamide gel disc electrophoresis of several oligomeric forms, isolated by the first electrophoresis, has shown that the oligomeric forms underwent a slow polymerization. It was suggested that "biosynthetic" L-threonine dehydratase from E. coli K-12 is a set of multiple oligomeric forms, having different kinetic parameters. Probably, each form of the enzyme has a "simple" kinetics characterized by hyperbolic or sigmoidal shape of v versus [S]o plots. The rate of equilibrium installation between the oligomeric forms was small in comparison with the enzyme reaction velocity, that lead to the complex kinetic curves, appearing as a result of summing up of the kinetics inherent to theindividual forms.  相似文献   

5.
The kinetics of the D-sorbitol to L-sorbose biotransformation catalysed by the strain Acetobacter suboxydans is studied. The product inhibits the bacterial growth but the transformation is an autocatalytic process. However, higher initial concentrations of sorbose lead to a considerable decrease of the rate constant of the reaction, although the autocatalytic process takes place too. The addition of sorbose in the exponential phase of bacterial growth, or in the stationary phase, leads to a considerable shortening of the process duration, compared to the traditional fermentation.

The rate constants calculated from the kinetic curves are dependent on the initial dry substances concentration and there is a correlation between these levels and the biomass concentration in the stationary phase.  相似文献   

6.
Pre-steady-state studies of the isocitrate dehydrogenase reaction show that the rate constant for the hydride-transfer step is above 990s-1, and that both subunits of the enzyme are simulataneously active. After the fast formation of NADPH in amounts equivalent to the enzyme subunit concentration, the rate of NADPH formation is equal to the steady-state rate if the enzyme has been preincubated with isocitrate and Mg2+. If the enzyme has been preincubated with NADP+ and Mg2+, in 0.05 M-triethanolamine chloride buffer, pH 7.0, with the addition of 0.1 M-NaCl, the amount of NADPH formed in the fast phase is only 60% of the enzyme subunit concentration, and the turnover rate is at first lower than the steady-state rate. In 0.05 M-triethanolamine chloride buffer, pH 7.0, if the enzyme is preincubated with NADP+ or NADPH, the turnover rate increases 3-fold to reach the steady-state rate after about 5 s. Preincubation of the enzyme with isocitrate and Mg2+ abolishes this lag phase, the steady-state rate being reached at once. It is suggested that the enzyme exists in at least two conformational forms with different activities, and that the lag phase represents the transition (k = 0.4s-1) from a form with low activity to the fully active enzyme, induced by the binding of isocitrate and Mg2+.  相似文献   

7.
Phosphocellulose chromatography of pigeon leg muscle extract revealed the existence of two well-separated forms of AMP deaminase. This was in contrast to the pigeon breast muscle extract, which yielded only one form. The two leg muscle enzyme isoforms manifested similar kinetic and regulatory properties. They were activated by very low concentration of potassium ions and demonstrated similar patterns of pH and effector dependence. At pH 6.5, as well as at other pH values tested. ADP and ATP slightly stimulated, whereas GTP and orthophosphate inhibited the two molecular forms of pigeons leg muscle enzyme. Surprisingly, the molecular form of AMP deaminase present in pigeon breast muscle was inhibited by ATP at all pH values tested. The kinetic and regulatory properties of the three molecular forms of pigeon skeletal muscle AMP deaminase examined do not resemble those which have been described for pigeon heart muscle enzyme.  相似文献   

8.
Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate.  相似文献   

9.
NADP-Dependent shikimate dehydrogenae (SKDH, EC 1.1.1.25) was purified from Gluconobacter oxydans IFO 3244. SKDH showed a single protein band on native-PAGE accompanying enzyme activity. It required NADP exclusively and catalyzed only the shuttle reaction between shikimate and 3-dehydroshikimate. The optimum pH for shikimate oxidation and 3-dehydroshikimate reduction was found at pH 10 and 7 respectively. SKDH proved to be a useful catalyst for shikimate production from 3-dehydroshikimate.  相似文献   

10.
Isotope exchange kinetics at chemical equilibrium have been used to investigate the kinetic mechanism of homoserine dehydrogenase (EC 1.1.1.3) of the (Thr-sensitive) aspartokinase/homoserine dehydrogenase-I multifunctional enzyme from E. coli. For the reaction (L-ASA + NADPH + H+ = L-Hse + NADP+), at pH 9.0, 37 degrees C, Keq = 100 (+/- 20). Under these conditions, the rate for exchange of [14C]-L-homoserine (Hse) in equilibrium L-aspartate-beta-semialdehyde (ASA) is nearly twice that for the [3H]-NADP+ in equilibrium NADPH exchange. This indicates that covalent interconversion between reactants and products bound in the active site cannot be rate-limiting. Upon variation of the concentrations of all four substrates in constant ratio at equilibrium (to minimize dead-end complex formation), the Hse in equilibrium ASA exchange increased smoothly toward a maximum. In contrast, the NADP+ in equilibrium NADPH exchange rate increased to a maximum value at partial saturation, then decreased to approximately half the maximum rate. These data are consistent with a preferred-order random kinetic mechanism in which the dominant pathway involves association of NADPH prior to L-ASA and dissociation of L-Hse prior to NADP+.  相似文献   

11.
S H Park  B G Harris  P F Cook 《Biochemistry》1986,25(13):3752-3759
Both chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzyme catalyze the metal-dependent decarboxylation of oxalacetate. Both enzymes catalyze the reaction either in the presence or in the absence of dinucleotide. The presence of dinucleotide increases the affinity of oxalacetate for the chicken liver NADP-malic enzyme, but this information could not be obtained in the case of A. suum NAD-malic enzyme because of the low affinity of free enzyme for NAD. The kinetic mechanism for oxalacetate decarboxylation by the chicken liver NADP-malic enzyme is equilibrium ordered at pH values below 5.0 with NADP adding to enzyme first. The Ki for NADP increases by a factor of 10 per pH unit below pH 5.0. An enzyme residue is required protonated for oxalacetate decarboxylation (by both enzymes) and pyruvate reduction (by the NAD-malic enzyme), but the beta-carboxyl of oxalacetate must be unprotonated for reaction (by both enzymes). The pK of the enzyme residue of the chicken liver NADP-malic enzyme decreases from a value of 6.4 in the absence of NADP to about 5.5 with Mg2+ and 4.8 with Mn2+ in the presence of NADP. The pK value of the enzyme residue required protonated for either oxalacetate decarboxylation or pyruvate reduction for the A. suum NAD-malic enzyme is about 5.5-6.0. Although oxalacetate binds equally well to protonated and unprotonated forms of the NADP-enzyme, the NAD-enzyme requires that oxalacetate or pyruvate selectively bind to the protonated form of the enzyme. Both enzymes prefer Mn2+ over Mg2+ for oxalacetate decarboxylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
There are two types of membrane-bound D-sorbitol dehydrogenase (SLDH) reported: PQQ-SLDH, having pyrroloquinoline quinone (PQQ), and FAD-SLDH, containing FAD and heme c as the prosthetic groups. FAD-SLDH was purified and characterized from the PQQ-SLDH mutant strain of a thermotolerant Gluconobacter frateurii, having molecular mass of 61.5 kDa, 52 kDa, and 22 kDa. The enzyme properties were quite similar to those of the enzyme from mesophilic G. oxydans IFO 3254. This enzyme was shown to be inducible by D-sorbitol, but not PQQ-SLDH. The oxidation product of FAD-SLDH from D-sorbitol was identified as L-sorbose. The cloned gene of FAD-SLDH had three open reading frames (sldSLC) corresponding to the small, the large, and cytochrome c subunits of FAD-SLDH respectively. The deduced amino acid sequences showed high identity to those from G. oxydans IFO 3254: SldL showed to other FAD-enzymes, and SldC having three heme c binding motives to cytochrome c subunits of other membrane-bound dehydrogenases.  相似文献   

13.
The kinetic mechanisms of the NAD- and NADP-linked reactions catalyzed by glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides were examined using product inhibition, dead-end inhibition and alternate substrate experiments. The results are consistent with a steady-state random mechanism for the NAD-linked and an ordered, sequential mechanism with NADP+ binding first for the NADP-linked reaction. Thus, the enzyme can bind NADP+, NAD+, and glucose 6-phosphate, but the enzyme-glucose 6-phosphate complex can react only with NAD+, not with NADP+. This affects the rate equation for the NADP-linked reaction by introducing a term for a dead-end enzyme-glucose 6-phosphate complex. The kinetic mechanisms represent revisions of those proposed previously (C. Olive, M.E. Geroch, and H.R. Levy, 1971, J. Biol. Chem. 246, 2047-2057) and provide a kinetic basis for the regulation of coenzyme utilization of the enzyme by glucose 6-phosphate concentration (H.R. Levy, and G.H. Daouk, 1979, J. Biol. Chem. 254, 4843-4847) and NADPH/NADP+ concentration ratios (H.R. Levy, G.H. Daouk, and M.A. Katopes, 1979, Arch, Biochem. Biophys. 198, 406-413). The kinetic mechanisms were found to be the same at pH 6.2 and pH 7.8. The kinetics of ATP inhibition of the NAD- and NADP-linked reactions were examined at pH 6.2 and pH 7.8. The results are interpreted in terms of ATP addition to binary enzyme-coenzyme and enzyme-glucose 6-phosphate complexes.  相似文献   

14.
The irreversible thermal inactivation of the sugarcane leaf NADP(+)-malic enzyme was studied at 50 degrees C and pH 7.0 and 8.0. Depending on the preincubation conditions, thermal inactivation followed mono- or biphasic first-order kinetics. A two-step behavior in the irreversible denaturation process was found when protein concentration was sufficiently low. The protein concentration necessary to obtain monlphasic thermal inactivation kinetics was lower at pH 8.0 than at pH 7.0. The results suggest that biphasic inactivation kinetics are the consequence of the existence of two different oligomeric forms of the enzyme (dimer and tetramer), with the dimer being more stable in regards to thermal inactivation. The effects of the substrate and essential cofactors on the thermostability and equilibrium between the dimeric and tetrameric enzyme forms were also studied. Depending on the pH, NADP+, L-malate, and Mg2+ all had a protective effect on the stability of the dimeric and tetrameric species during thermal treatment. However, these ligands showed different effects on the aggregation state of the enzyme. NADP+ and L-malate induced dissociation, especially at pH 8.0, whereas Mg2+ induced aggregation of the protein. By studying the thermal inactivation kinetics at 50 degrees C and different pH values it was observed that the equilibrium between dimers and tetramers was dramatically affected in the range of pH 7.0-8.0. These results suggest that an amino acid residue(s) in the protein with an apparent pKa value of 7.7 needs to be deprotonated to stabilize aggregation of the enzyme to the tetrameric form.  相似文献   

15.
The kinetic mechanism of octopine dehydrogenase has been investigated by stopped-flow and isotope replacement techniques. When the enzyme is saturated by substrate and coenzyme, both for NADH oxidation and NAD+ reduction, the stationary phase is preceded by a rapid burst. Under these saturation conditions, furthermore, the stationary phase shows a secondary isotope effect when 4S-[4(2)H]NADH is substituted for NADH and when (on the other reaction end) D-[2H] octopine is substituted for D-octopine. The data are taken to indicate that the rate-limiting step for enzyme turnover is a step following a very fast chemical transformation of the reagents. However, when the substrate concentration is lowered below the corresponding Km value keeping the coenzyme concentration at saturating levels, the time course of the reaction shows no burst and the stationary phase has a larger isotope effect. This indicated that under those non-saturating conditions, the enzyme turnover has a larger contribution than the hydrogen-transfer step. Changing the coenzyme concentration alone has very little or no effect on the amplitude of the burst or on the isotope effect. These features are discussed in terms of the other known kinetic properties of the enzyme, and in terms of analogous studies reported in the literature for other dehydrogenases.  相似文献   

16.
The kinetic properties of sorbitol dehydrogenase from calf liver cell cytoplasm during sorbitol oxidation were studied at pH 7.0, 7.5, 8.0, 9.0 and 10.0. It was found that the shape of kinetic curves for NADH accumulation depends on pH and substrate concentration. At pH 7.0, 7.5 and 8.0 the enzymatic reaction obeys the Michaelis-Menten kinetics with Km of 3.3 x 10(-3) M. 2.3 x 10(-3) M and 2.08 x 10(-3) M, respectively. At pH 9.0 and 10.0 the vovs [So] curves have an "intermediate plateau". The Hill plots for this reaction reveal two slopes that are dependent on substrate concentration. The nH values for sorbitol (up to 2 mM) are 1.0 and 1.16 at pH 9.0 and 10.0, respectively. With a further rise in the substrate concentration, the nH value increases up to 2.4 and 2.18 at pH 9.0 and 10.0, respectively. This is suggestive of the existence of a slowly dissociating enzymatic system of the Np in equilibrium P type (where P is the oligomeric and p the monomeric forms of the enzyme); N approximately greater than 2. The vovs NAD plots are S-shaped at all pH values studied. The data obtained are discussed in terms of regulatory effects of sorbitol and acidity on association-dissociation of sorbitol dehydrogenase from liver cell cytoplasm.  相似文献   

17.
Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3alpha-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NADPH (reduction) and androsterone and NADP(+) (oxidation). Steady-state, transient state kinetics, and kinetic isotope effects reconciled the ordered bi-bi mechanism, which contained 9 enzyme forms and permitted the estimation of 16 kinetic constants. In both reactions, loose association of the NADP(H) was followed by two conformational changes, which increased cofactor affinity by >86-fold. For androstane-3,17-dione reduction, the release of NADP(+) controlled k(cat), whereas the chemical event also contributed to this term. k(cat) was insensitive to [(2)H]NADPH, whereas (D)k(cat)/K(m) and the (D)k(lim) (ratio of the maximum rates of single turnover) were 1.06 and 2.06, respectively. Under multiple turnover conditions partial burst kinetics were observed. For androsterone oxidation, the rate of NADPH release dominated k(cat), whereas the rates of the chemical event and the release of androstane-3,17-dione were 50-fold greater. Under multiple turnover conditions full burst kinetics were observed. Although the internal equilibrium constant favored oxidation, the overall K(eq) favored reduction. The kinetic Haldane and free energy diagram confirmed that K(eq) was governed by ligand binding terms that favored the reduction reactants. Thus, HSDs in the aldo-keto reductase superfamily thermodynamically favor ketosteroid reduction.  相似文献   

18.
The kinetic behaviour of adsorptive enzyme systems with free and adsorbed enzyme forms in rapid equilibrium has been analysed. It has been shown that the dependences of enzymic reaction rate on substrate or “adsorptive effector” concentrations reveal the deviations from simple kinetic laws of Michaelis-Menten type (positive or negative kinetic co-operativity). Such kinetic anomalies should be observed when adsorption of the enzyme results in the changing catalytic properties and when the state of the equilibrium between free and bound enzyme forms depends on the presence of low molecular substances (substrates, coenzymes and various cellular metabolites). The physiological significance of adsorption-desorption processes for the enzyme activity regulation has been emphasized.  相似文献   

19.
The kinetic properties of the [3H]ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase [EC 3.6.1,3] were investigated, using NaI-treated microsomes from bovine brain, and the following results were obtained. 1. The rates of the Na+-dependent exchange reaction in the steady state were measured in a solution containing 45 micronM free Mg2+, 100 mMNaCl, 80 micronM ATP, and 160 micronM ADP at pH 6.5 and 4-5 degrees. The rate and amount of decrease in phosphorylated intermediate on adding ADP, i.e., the amount of ADP-sensitive EP, were measured while varying one of the reaction parameters and fixing the others mentioned above. Plots of the exchange rate and the amount of ADP-sensitive EP against the logarithm of free Mg2+ concentration gave bell-shaped curves with maximum values at 50-60 micronM free Mg2+. Plots of the exchange rate and the amount of ADP-sensitive EP against pH also gave bell-shaped curves with maximum values at pH 6.9-7. They both increased with increase in the concentration of NaCl to maximum values at 150-200 mM NaCl, and then decreased rapidly with increase in the NaCl concentration above 200 mM. The dependences of the exchange rate and the amount of ADP-sensitive EP on the concentration of ADP followed the Michaelis-Menten equation, and the Michaelis constants Km, for both were 43 micronM. The dependence of the exchange rate on the ATP concentration also followed the Michaelis-Menten equation, and the Km value was 30 micronM. The amount of ADP-sensitive EP increased with increase in the ATP concentration, and reached a maximum value at about 5 micronM ATP. 2. The N+-dependent [3H]ADP-ATP exchange reaction was started by adding [3H]ADP to EP at low Mg2+-concentration. The reaction consisted of a rapid initial phase and a slow steady phase. The amount of [3H]ATP formed during the rapid initial phase, i.e. the size of the ATP burst, was equal to that of ADP-sensitive EP, and was proportional to the rate in the steady state. At high Mg2+ concentration, the rate of Na+-dependent exchange in the steady state was almost zero, and EP did not show any ADP sensitivity. However, rapid formation of [3H]ATP was observed in the pre-steady state, and the size of the ATP burst increased with increase in the KCl concentration. From these findings, we concluded that an enzyme-ATP complex (E2ATP) formed at low Mg2+ concentration is in equilibrium with EP + ADP, that the rate-limiting step for the exchange reaction is the release of ATP from the enzyme-ATP complex, that the ADP-insensitive EP (formula: see text) produced at high Mg2+ concentration is in equilibrium with the enzyme-ATP complex, and that the equilibrium shifts towards the enzyme-ATP complex on adding KCl. Actually, the ratio of the size of the ATP burst to the amount of EP was equal to the reciprocal of the equilibrium constant of step (formula: see text), determined by a method previously reported by us.  相似文献   

20.
NADP-malic enzyme from plants.   总被引:13,自引:0,他引:13  
NADP-malic enzyme functions in plant metabolism as a decarboxylase of malate in the chloroplast or cytosol. It serves as a source of CO2 for photosynthesis in the bundle sheath chloroplasts of C4 plants and in the cytosol of Crassulacean acid metabolism plants, and as a source of NADPH and pyruvate in the cytosol of various tissues. Mg2+ or Mn2+ is required as a cofactor. The enzyme has a high specificity and low Km for NADP+. It exists as a tetramer which may undergo changes in oligomerization and exhibit hysteresis. Its kinetic properties vary depending on the compartmentation and function of the enzyme. The chloroplast form in C4 plants has a high pH optimum (pH 8) under high malate, which favours the tetramer, whereas lower pH (pH 7) favours the dimer form. Generally, other forms of the enzyme, which are thought to be cytosolic, have lower pH optima than the chloroplast enzyme. In a number of cases these forms have been shown to have allosteric properties with malate as a substrate. Chemical modifications of the plant enzyme suggest sulphydryl, histidine and arginine residues are required for catalysis. Primary sequence studies on the chloroplastic enzyme from C4 plants show significant similarities to cytosolic NADP-ME in plants and animals, including a sequence motif which is indicative of the NADP+ binding site. The possible origin of the chloroplast form of the enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号