首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract A sorbitol dehydrogenase was purified from the membrane fraction of Gluconobacter suboxydans KCTC 2111 (= ATCC 621) by chromatography on CM-, DEAE-, Mono S and Superose 12 columns. The purified enzyme showed a single activity band upon nondenaturing polyacrylamide gel electrophoresis (PAGE) and three subunits of 75, 50 and 14 kDa upon SDS-PAGE. When purified preparations of the enzyme were reconstituted with pyrroloquinoline quinone (PQQ), the specific enzyme activity was significantly increased (up to 9-fold). The absorption spectrum of purified sorbitol dehydrogenase in the reduced state exhibited three absorption maxima (417, 522 and 552 nm) which is in accordance with the typical absorption spectrum of cytochrome c . The 50 kDa subunit appeared as a red band on unstained SDS-gels suggesting its identity as a cytochrome. Fluorescence spectra of extracts from purified sorbitol dehydrogenase showed an excitation maximum at 370 nm and an emission maximum at 465 nm, which conformed to those of authentic PQQ. The purified enzyme showed a rather broad substrate specificity with significant activity toward D-mannitol (68%) and D-ribitol (70%) as well as D-sorbitol (100%). The PQQ-dependent sorbitol dehydrogenase described in this study is clearly different from the FAD-dependent sorbitol dehydrogenase from G. suboxydans var. α IFO 3254 strain in its cofactor requirement and substrate specificity.  相似文献   

2.
Gluconobacter oxydans rapidly oxidizes many different polyhydroxy alcohols (polyols). Polyol oxidations are catalyzed by constitutively synthesized membrane-bound dehydrogenases directly linked to the electron transport chain. A polyol-oxidizing enzyme was isolated from the membranes of G. oxydans and tested for its ability to oxidize various substrates. The enzyme was composed of three subunits: a 67 kDa catalytic unit, a 46 kDa c-type cytochrome, and a 15 kDa subunit. The enzyme oxidized compounds containing three or more hydroxyl groups but did not oxidize mono-, di-, or cyclic alcohols; aldehydes; carboxylic acids; or mono- or di-saccharides. Therefore, we propose this enzyme be considered a polyol dehydrogenase.  相似文献   

3.
Gluconobacter strains effectively produce L-sorbose from D-sorbitol because of strong activity of the D-sorbitol dehydrogenase (SLDH). L-sorbose is one of the important intermediates in the industrial vitamin C production process. Two kinds of membrane-bound SLDHs, which consist of three subunits, were reportedly found in Gluconobacter strains [Agric. Biol. Chem. 46 (1982) 135,FEMS Microbiol. Lett. 125 (1995) 45]. We purified a one-subunit-type SLDH (80 kDa) from the membrane fraction of Gluconobacter suboxydans IFO 3255 solubilized with Triton X-100 in the presence of D-sorbitol, but the cofactor could not be identified from the purified enzyme. The SLDH was active on mannitol, glycerol and other sugar alcohols as well as on D-sorbitol to produce respective keto-aldoses. Then, the SLDH gene (sldA) was cloned and sequenced. It encodes the polypeptide of 740 residues, which contains a signal sequence of 24 residues. SLDH had 35-37% identity to those of membrane-bound quinoprotein glucose dehydrogenases (GDHs) from Escherichia coli, Gluconobacter oxydans and Acinetobacter calcoaceticus except the N-terminal hydrophobic region of GDH. Additionally, the sldB gene located just upstream of sldA was found to encode the polypeptide consisting of 126 very hydrophobic residues that is similar to the one-sixth N-terminal region of the GDH. Development of the SLDH activity in E. coli required co-expression of the sldA and sldB genes and the presence of PQQ. The sldA gene disruptant showed undetectable oxidation activities on D-sorbitol in growing culture, and resting-cell reaction (pH 4.5 and 7); in addition, they showed undetectable activities on D-mannitol and glycerol. The disruption of the sldB gene by a gene cassette with a downward promoter to express the sldA gene resulted in formation of a larger size of the SLDH protein and in undetectable oxidation of the polyols. In conclusion, the SLDH of the strain 3255 functions as the main polyol dehydrogenase in vivo. The sldB polypeptide possibly has a chaperone-like function to process the SLDH polypeptide into a mature and active form.  相似文献   

4.
Two different membrane-bound enzymes oxidizing D-sorbitol are found in Gluconobacter frateurii THD32: pyroloquinoline quinone-dependent glycerol dehydrogenase (PQQ-GLDH) and FAD-dependent D-sorbitol dehydrogenase (FAD-SLDH). In this study, FAD-SLDH appeared to be induced by L-sorbose. A mutant defective in both enzymes grew as well as the wild-type strain did, indicating that both enzymes are dispensable for growth on D-sorbitol. The strain defective in PQQ-GLDH exhibited delayed L-sorbose production, and lower accumulation of it, corresponding to decreased oxidase activity for D-sorbitol in spite of high D-sorbitol dehydrogenase activity, was observed. In the mutant strain defective in PQQ-GLDH, oxidase activity with D-sorbitol was much more resistant to cyanide, and the H(+)/O ratio was lower than in either the wild-type strain or the mutant strain defective in FAD-SLDH. These results suggest that PQQ-GLDH connects efficiently to cytochrome bo(3) terminal oxidase and that it plays a major role in L-sorbose production. On the other hand, FAD-SLDH linked preferably to the cyanide-insensitive terminal oxidase, CIO.  相似文献   

5.
Cloning and expression of the gene encoding Acetobacter liquefaciens IFO 12258 membrane-bound L-sorbosone dehydrogenase (SNDH) were studied. A genomic library of A. liquefaciens IFO 12258 was constructed with the mobilizable cosmid vector pVK102 (mob+) in Escherichia coli S17-1 (Tra+). The library was transferred by conjugal mating into Gluconobacter oxydans OX4, a mutant of G. oxydans IFO 3293 that accumulates L-sorbosone in the presence of L-sorbose. The transconjugants were screened for SNDH activity by performing a direct expression assay. One clone harboring plasmid p7A6 converted L-sorbosone to 2-keto-L-gulonic acid (2KGA) more rapidly than its host did and also converted L-sorbose to 2KGA with no accumulation of L-sorbosone. The insert (25 kb) of p7A6 was shortened to a 3.1-kb fragment, in which one open reading frame (1,347 bp) was found and was shown to encode a polypeptide with a molecular weight of 48,222. The SNDH gene was introduced into the 2KGA-producing strain G. oxydans IFO 3293 and its derivatives, which contained membrane-bound L-sorbose dehydrogenase. The cloned SNDH was correctly located in the membrane of the host. The membrane fraction of the clone exhibited almost stoichiometric formation of 2KGA from L-sorbosone and L-sorbose. Resting cells of the clones produced 2KGA very efficiently from L-sorbosone and L-sorbose, but not from D-sorbitol; the conversion yield from L-sorbosone was improved from approximately 25 to 83%, whereas the yield from L-sorbose was increased from 68 to 81%. Under fermentation conditions, cloning did not obviously improve the yield of 2KGA from L-sorbose.  相似文献   

6.
Quinoprotein quinate dehydrogenase (QDH) is a membrane-bound enzyme containing pyrroloquinoline quinone (PQQ) as the prosthetic group. QDH in Gluconobacter oxydans IFO3244 was found to be inducible by quinate and it is not constitutively expressed in the absence of quinate. The purification of holo-form of QDH to nearly homogeneity was achieved. The purified QDH appears to have two subunits of approximately 65 and 21 kDa, which could be the result of proteolysis of single polypeptide. Kinetic analysis indicated that the purified enzyme is much more specific to quinate than QDH from Acinetobacter calcoaceticus. The efficiency of the artificial electron acceptor was also determined.  相似文献   

7.
D-Sorbitol dehydrogenase was solubilized from the membrane fraction of Gluconobacter suboxydans IFO 3255 with Triton X-100 in the presence of D-sorbitol. Purification of the enzyme was done by fractionation with column chromatographies of DEAE-Cellulose, DEAE-Sepharose, hydroxylapatite, and Sephacryl HR300 in the presence of Triton X-100. The molecular mass of the enzyme was 800 kDa, consisting of homologous subunits of 80 kDa. The optimum pH of the enzyme activity was 6.0, and the optimum temperature was 30 degrees C. Western blot analysis suggested the occurrence of the enzyme in all the Gluconobacter strains tested.  相似文献   

8.
Gluconate:NADP 5-oxidoreductase (GNO) from the acetic acid bacterium Gluconobacter oxydans subsp. oxydans DSM3503 was purified to homogeneity. This enzyme is involved in the nonphosphorylative, ketogenic oxidation of glucose and oxidizes gluconate to 5-ketogluconate. GNO was localized in the cytoplasm, had an isoelectric point of 4.3, and showed an apparent molecular weight of 75,000. In sodium dodecyl sulfate gel electrophoresis, a single band appeared corresponding to a molecular weight of 33,000, which indicated that the enzyme was composed of two identical subunits. The pH optimum of gluconate oxidation was pH 10, and apparent Km values were 20.6 mM for the substrate gluconate and 73 microM for the cosubstrate NADP. The enzyme was almost inactive with NAD as a cofactor and was very specific for the substrates gluconate and 5-ketogluconate. D-Glucose, D-sorbitol, and D-mannitol were not oxidized, and 2-ketogluconate and L-sorbose were not reduced. Only D-fructose was accepted, with a rate that was 10% of the rate of 5-ketogluconate reduction. The gno gene encoding GNO was identified by hybridization with a gene probe complementary to the DNA sequence encoding the first 20 N-terminal amino acids of the enzyme. The gno gene was cloned on a 3.4-kb DNA fragment and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 771 bp, encoding a protein of 257 amino acids with a predicted relative molecular mass of 27.3 kDa. Plasmid-encoded gno was functionally expressed, with 6.04 U/mg of cell-free protein in E. coli and with 6.80 U/mg of cell-free protein in G. oxydans, which corresponded to 85-fold overexpression of the G. oxydans wild-type GNO activity. Multiple sequence alignments showed that GNO was affiliated with the group II alcohol dehydrogenases, or short-chain dehydrogenases, which display a typical pattern of six strictly conserved amino acid residues.  相似文献   

9.
The kinetic properties of NADP-dependent sorbitol dehydrogenase from G. oxydans cell extract were studied at pH 8.8 and 9.3 in the direction of D-sorbitol oxydation. It was shown that the shape of the kinetic curves of NADPH accumulation in time is characterised by initial burst whose magnitude depends on the concentration of the enzyme extract used. Preincubation of the enzyme with NADP or D-sorbitol eliminated the initial burst on these curves and transformed them into straight lines coming from the start of co-ordinates. The dependence of the stationary reaction rate on the enzyme extract concentration is not a linear one. The kinetic dependences of stationary rate of the reaction catalysed by the enzyme on the concentration of D-sorbitol and NADP at pH 8.8 and 9.3 were examined under all conditions studied; the shape of these kinetic curves altered to considerable extent with the alteration of the enzyme extract concentration in the reaction mixture and pH. At pH 9.3 several intermiediate plateaux were found on the curves of the D-sorbitol concentration dependent stationary rate of the reaction. The preincubation of the enzyme extract with NADP during 1.5 h removed the intermediate plateau on these curves and made them hyperbolic. Disk-electrophoresis of the enzyme extract in PAAG concentration gradient showed that at pH 8.8 the enzyme exists in one active form, while at pH 9.3 it exists in three major and three minor active forms of the enzyme differing in their molecular weights are found. It is assumed that the enzyme from G. oxydans cell extract can exist in a great number of molecular equilibrium forms, the rate of quilibrium being comparable or significantly less than that of the enzymatic reaction. NADP significantly influences on the equilibrium of the molecular forms of the enzyme.  相似文献   

10.
Cytochrome c oxidase from baker's yeast contains three mitochondrially made subunits (I to III) which are relatively hydrophobic and four cytoplasmically made subunits (IV to VII) which are relatively hydrophilic (Mason, T. L., Poyton, R. O., Wharton, D.C., and Schatz, G. (1973) J. Biol. Chem. 248, 1346-1354 and Poyton, R. O., and Schatz, G. (1975) J. Biol. Chem. 250, 752-761). In order to explore the arrangement of these subunits in the holoenzyme, the reactivity of each subunit with a variety of "surface probes" was tested with isolated cytochrome c oxidase, with cytochrome c oxidase incorporated into liposomes, and with mitochondrially bound cytochrome c oxidase. The surface probes included iodination with lactoperoxidase and coupling with p-diazonium benzenesulfonate. In addition, external subunits were identified by linking them to bovine serum albumin carrying a covalently bound isocyanate group. In the membrane-bound enzyme, Subunit I was almost completely inaccessible and Subunit II was partly inaccessible to all surface probes. All of the other subunits were accessible. Similar results were obtained with the solubilized enzyme, except that the differences in reactivity between the individual subunits were less clear-cut. The results obtained with liposome-bound cytochrome c oxidase resembled those obtained with the mitochondrially bound enzyme. These data suggest that the two largest mitochondrially made subunits are localized in the interior of the enzyme and that they are genuine components of cytochrome c oxidase.  相似文献   

11.
Electrophoresis of a Corynebacterium glutamicum membrane preparation in the presence of sodium dodecyl sulfate, followed by staining for peroxidase activity (heme staining), showed only one band at about 28 kDa. This 28 kDa protein was purified from C. glutamicum membranes by chromatography in the presence of decylglucoside using DEAE-Toyopearl and hydroxylapatite columns, as the sole c-type cytochrome in the bacterium. The cytochrome showed an alpha band at 551 nm, and its E(m, 7) was about 210 mV. A QcrCAB operon encoding the subunits of a putative quinol cytochrome c reductase was found 3'-downstream of ctaE encoding subunit III of cytochrome aa(3) in the C. glutamicum genome. The deduced amino acid sequence of qcrC, composed of 283 amino acid residues, contained two heme C-binding motifs and was in agreement with partial peptide sequences obtained from the 28 kDa protein after V8 protease digestion. We propose to name this protein cytochrome cc. The presence of cytochrome cc is a common feature of high G+C content Gram-positive bacteria, since we could confirm this protein by electrophoresis; homologous QcrCAB operons are also known in Mycobacterium and Streptomyces. QcrA and qcrB of C. glutamicum encode the Rieske Fe-S protein and cytochrome b, respectively, although these proteins were not co-purified with cytochrome cc. The phylogenetic tree of cytochromes b and b(6) show that C. glutamicum cytochrome b, along with those of other bacteria in the high G+C group, is rather different from the Bacillus counterparts, but highly similar to the Deinococci and Thermus cytochromes. This indicates that there is a fourth group of bacteria in addition to the three clades: proteobacterial cytochrome b, cyanobacterial b(6) and green sulfur-low G+C Gram-positive bacteria.  相似文献   

12.
Solubilization of membrane-bound quinoprotein D-arabitol dehydrogenase (ARDH) was done successfully with the membrane fraction of Gluconobacter suboxydans IFO 3257. In enzyme solubilization and subsequent enzyme purification steps, special care was taken to purify ARDH as active as it was in the native membrane, after many disappointing trials. Selection of the best detergent, keeping ARDH as the holoenzyme by the addition of PQQ and Ca2+, and of a buffer system involving acetate buffer supplemented with Ca2+, were essential to treat the highly hydrophobic and thus labile enzyme. Purification of the enzyme was done by two steps of column chromatography on DEAE-Toyopearl and CM-Toyopearl in the presence of detergent and Ca2+. ARDH was homogenous and showed a single sedimentation peak in analytical ultracentrifugation. ARDH was dissociated into two different subunits upon SDS-PAGE with molecular masses of 82 kDa (subunit I) and 14 kDa (subunit II), forming a heterodimeric structure. ARDH was proven to be a quinoprotein by detecting a liberated PQQ from SDS-treated ARDH in HPLC chromatography. More preliminarily, an EDTA-treated membrane fraction lost the enzyme activity and ARDH activity was restored to the original level by the addition of PQQ and Ca2+. The most predominant unique character of ARDH, the substrate specificity, was highly versatile and many kinds of substrates were oxidized irreversibly by ARDH, not only pentitols but also other polyhydroxy alcohols including D-sorbitol, D-mannitol, glycerol, meso-erythritol, and 2,3-butanediol. ARDH may have its primary function in the oxidative fermentation of ketose production by acetic acid bacteria. ARDH contained no heme component, unlike the type II or type III quinoprotein alcohol dehydrogenase (ADH) and did not react with primary alcohols.  相似文献   

13.
14.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

15.
A quinol-cytochrome c oxidoreductase (cytochrome bc1 complex) has been purified from plasma membranes of a thermophilic Bacillus, PS3, by ion-exchange chromatography in the presence of Triton X-100. The purified enzyme shows absorption bands at 561-562 nm and 553 nm at room temperature, and 560, 551, and 547 nm at 80 K upon reduction, and gives an ESR signal similar to that of a Rieske-type iron sulfur center. Its contents of protohemes, heme c, and non-heme iron are about 23, 10, and 21 nmol/mg of protein, respectively. The enzyme consists of four polypeptides with molecular masses of 29, 23, 21, and 14 kDa judging from their electrophoretic mobilities in the presence of sodium lauryl sulfate. Since the staining intensities of the respective bands are almost proportional to their molecular masses, the monomer complex (87 kDa) of the subunits probably consists of a cytochrome b having two protohemes, a cytochrome c1 and an Fe2-S2-type iron sulfur center. The 29 and 21 kDa subunits were identified as cytochromes c1 and b, respectively, and the 23-kDa subunit is probably an iron-sulfur protein, since the 14-kDa polypeptide can be removed with 3 M urea without reducing the content of non-heme iron. Several characteristics of the subunits and chromophores indicate that the PS3 enzyme is rather similar to cytochrome b6f (a bc1 complex equivalent) of chloroplasts and Cyanobacteria. The PS3 complex catalyzes reduction of cytochrome c with various quinol compounds in the presence of P-lipids and menaquinone. The turnover number at pH 6.8 was about 5 s-1 at 40 degrees C and 50 s-1 at 60 degrees C. The enzyme is heat-stable up to 65 degrees C.  相似文献   

16.
The sldA gene that encodes the D-sorbitol dehydrogenase (SLDH) from Gluconobacter suboxydans IFO 3255 was cloned and sequenced. It encodes a polypeptide of 740 residues, which contains a signal sequence of 24 residues. SLDH had 35-37% identity to the membrane-bound quinoprotein glucose dehydrogenases (GDHs) from E. coli, Gluconobacter oxydans, and Acinetobacter calcoaceticus except the N-terminal hydrophobic region of GDH. Additionally, the sldB gene located just upstream of sldA was found to encode a polypeptide consisting of 126 very hydrophobic residues that is similar in sequence to the one-sixth N-terminal region of the GDH. For the development of the SLDH activity in E. coli, co-expression of the sldA and sldB genes and the presence of pyrrloquinolone quinone as a co-factor were required.  相似文献   

17.
To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be the enzyme responsible for L-ribulose production in oxidative fermentation by acetic acid bacteria.  相似文献   

18.
Evidence for the presence of a quinol oxidase super-complex composed of a cytochrome bc1 complex and cytochrome oxidase in the respiratory chain of a Gram-positive thermophilic bacterium PS3 is reported. On incubation with an octyl glucoside-solubilized fraction of the total membranes of PS3 anti-serum against PS3 cytochrome oxidase gave an immunoprecipitate that showed both quinol-cytochrome c reductase and cytochrome c oxidase activities. When the cholate-deoxycholate and LiCl-treated membranes of PS3 were solubilized and subjected to ion-exchange chromatography in the presence of octaethyleneglycol dodecyl ether, most of the A-, B-, and C-type cytochromes were copurified as a peak having both quinol-cytochrome c reductase and cytochrome oxidase activities. The immunoprecipitate and quinol oxidase preparation contained hemes a, b, and c in a ratio of about 2:2:3, indicating the presence of one-to-one complex of cytochrome oxidase containing 2 hemes a and one heme c, and a bc1 complex containing 2 hemes b and 2 hemes c. Gel electrophoresis in the presence of dodecyl sulfate showed that the immunoprecipitate and quinol oxidase preparation were composed of seven subunits; those of 51 (56-kDa), 38, and 22 kDa for cytochrome oxidase and those of 29, 23, 21, and 14 kDa for the bc1 complex. The 38-, 29-, and 21 kDa components possessed covalently bound heme c. The apparent molecular mass of the super complex was estimated to be as 380 kDa by gel filtration.  相似文献   

19.
Abstract Membranes of the extremely thermoacidophilic archaeon Desulfurolobus ambivalens grown under aerobic conditions contain a quinol oxidase of the cytochrome aa 3-type as the most prominent hemoprotein. The partially purified enzyme consists of three polypeptide subunits with apparent molecular masses of 40, 27 and 20 kDa and contains two heme A molecules and one copper atom. CO difference spectra suggest one heme to be a heme a 3-centre. The EPR spectra indicate the presence of a low-spin and a high-spin heme species. Redox titrations of the solubilized enzyme show the presence of two reduction processes, with apparent potentials of + 235 and + 330 mV. The enzyme cannot oxidize reduced cytochrome c , but rather serves as an oxidase of caldariella quinone. Due to their very simple composition, D . ambivalens cell appear as a promising candidate to study Structure-function relationships of cytochrome aa 3 in the integral membrane state.  相似文献   

20.
Most Gluconobacter species produce and accumulate 2-keto-d-gluconate (2KGA) and 5KGA simultaneously from d-glucose via GA in culture medium. 2KGA is produced by membrane-bound flavin adenine dinucleotide-containing GA 2-dehydrogenase (FAD-GADH). FAD-GADH was purified from "Gluconobacter dioxyacetonicus" IFO 3271, and N-terminal sequences of the three subunits were analyzed. PCR primers were designed from the N-terminal sequences, and part of the FAD-GADH genes was cloned as a PCR product. Using this PCR product, gene fragments containing whole FAD-GADH genes were obtained, and finally the nucleotide sequence of 9,696 bp was determined. The cloned sequence had three open reading frames (ORFs), gndS, gndL, and gndC, corresponding to small, large, and cytochrome c subunits of FAD-GADH, respectively. Seven other ORFs were also found, one of which showed identity to glucono-delta-lactonase, which might be involved directly in 2KGA production. Three mutant strains defective in either gndL or sldA (the gene responsible for 5KGA production) or both were constructed. Ferricyanide-reductase activity with GA in the membrane fraction of the gndL-defective strain decreased by about 60% of that of the wild-type strain, while in the sldA-defective strain, activity with GA did not decrease and activities with glycerol, d-arabitol, and d-sorbitol disappeared. Unexpectedly, the strain defective in both gndL and sldA (double mutant) still showed activity with GA. Moreover, 2KGA production was still observed in gndL and double mutant strains. 5KGA production was not observed at all in sldA and double mutant strains. Thus, it seems that "G. dioxyacetonicus" IFO 3271 has another membrane-bound enzyme that reacts with GA, producing 2KGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号