首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We have studied the nocturnal flight behaviour of the common swift (Apus apus L.), by the use of a tracking radar. Birds were tracked from Lund University in southern Sweden during spring migration, summer roosting flights and autumn migration. Flight speeds were compared with predictions from flight mechanical and optimal migration theories. During spring, flight speeds were predicted to be higher than during both summer and autumn due to time restriction. In such cases, birds fly at a flight speed that maximizes the overall speed of migration. For summer roosting flights, speeds were predicted to be lower than during both spring and autumn since the predicted flight speed is the minimum power speed that involves the lowest energy consumption per unit time. During autumn, we expected flight speeds to be higher than during summer but lower than during spring since the expected flight speed is the maximum range speed, which involves the lowest energy consumption per unit distance. Flight speeds during spring were indeed higher than during both summer and autumn, which indicates time-selected spring migration. Speeds during autumn migration were very similar to those recorded during summer roosting flights. The general result shows that swifts change their flight speed between different flight behaviours to a smaller extent than expected. Furthermore, the difference between flight speeds during migration and roosting among swifts was found to be less pronounced than previously recorded.  相似文献   

2.
Swifts Apus apus are renowned for their fast flight manner which has fascinated people in all times. However, previous studies of swifts in flight during migration and roosting flights have shown that the birds operate over a narrow range of flight speeds compared with most other birds studied. In this study we have focused on the special flight behavior often called 'screaming parties'. During these flights the birds appear to reach very high speeds and therefore we used a stereo high speed camera setup to measure the flight speeds of the birds during this behavior with high accuracy. The birds were found to fly at much higher speeds during 'screaming parties' than during migration or roosting, on average twice as fast, 20.9  ms−1 (±5.1  ms−1) in horizontal speed. The highest record was 31.1  ms−1 which is the highest measured yet for a swift in self powered flight. Furthermore, the birds were performing steep climbing flights, on average 4.0  ms−1 (±2.8  ms−1) in vertical velocity. A clear trade-off between horizontal speed and vertical speed was found, suggesting that the birds are operating at their maximum.  相似文献   

3.
Wing kinematics of avian flight across speeds   总被引:2,自引:0,他引:2  
To test whether wing shape affects the kinematics of wing motion during bird flight, we recorded high-speed video (250 Hz) of four species flying in a variable-speed wind tunnel. The birds flew at intervals of 2 m s−1, ranging from 1 m s−1 up to their respective maximum flight speed, which varied from 14 to 17 m s−1 depending on the species. Kinematic data obtained from two synchronized, high-speed video cameras were analyzed using 3D reconstruction. Three species with relatively pointed, high-aspect ratio wings changed wingbeat styles according to flight speed (budgerigar, Melopsittacus undulatus ; cockatiel, Nymphicus hollandicus ; ringed turtle dove, Streptopelia risoria ). These species used a wing-tip reversal upstroke, characterized by supination of the distal wing at mid-upstroke, at equivalent airspeeds ≤7 to 9 m s−1. In faster flight, they used a swept-wing upstroke, without distal wing supination. At mid-upstroke at any speed, wingspan in these species was greater than wrist span. In contrast, at all steady flight speeds, the black-billed magpie Pica hudsonia with relatively broad, low-aspect ratio wings, used a flexed-wing, feathered upstroke in which wrist spans were equal to or greater than wingspans. Our results demonstrate that wing kinematics vary gradually as a function of flight speed, and that the patterns of variation are strongly influenced by external wing shape.  相似文献   

4.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

5.
Saithe Pollachius virens , tracked diurnally with a split-beam echosounder, showed no relationship between size and swimming speed. The average and the median swimming speeds were 1·05 m s−1(±0·09 m s−1) and 0·93 m s−1, respectively. However, ping-to-ping speeds up to 3·34 m s−1 were measured for 25–29 cm fish, whose swimming speeds were significantly higher at night (1·08 m s−1) than during the day (0·72 m s−1). The high average swimming speed could be related to the foraging or streaming part of the population and not to potential weakness of the methodology. However, the uncertainty of target location increased with depth and resulted in calculated average swimming speeds of 0·15 m s−1 even for a stationary target. With increasing swimming speed the average error decreased to 0 m s−1 for speeds >0·34 m s−1. Species identity was verified by trawling in a pelagic layer and on the bottom.  相似文献   

6.
That birds migrate in the reverse direction of the expected is a phenomenon of regular occurrence which has been observed at many sites. Here we use three different methods; tracking radar, radiotelemetry and ringing, to characterize the flights of these reverse migrants and investigate possible causes of reverse migration of nocturnally migrating passerines during autumn migration at Falsterbo peninsula, Sweden. Using these different methods we investigated both internal factors, such as age and fuel load, and external factors such as weather variables, competition and predation risk. Birds flying in the reverse direction were more likely to be lean and to be juveniles. Reverse migration was also more common with overcast skies and winds with north and east components. We did not find any effect of temperature, visibility, number of migrating sparrowhawks, or the total number of ringed birds at the site on the day of departure. We found that reverse migration is characterized by slower flight speeds (airspeed) at high altitudes and that it takes place later in the night than forward migration.  相似文献   

7.
To determine the relation between swimming endurance time and burst swimming speed, elvers of the European eel, Anguilla anguilla (L.), were made to swim at speeds from 3.6 to 7.2 L (body lengths) s−1 in both fresh and sea water. Swimming endurance time of elvers averaging 7.2 cm total length decreased logarithmically with increased swimming speed from 3.0 min at 3.5 L s−1 to 0.7 min at 5.0 L s−1, and again logarithmically but with a lesser slope to 0.27 min at 7.5 L s−1. No differences were found between fresh and sea water elvers. In still water, elvers could swim at high speeds for about 10–45m before exhaustion, depending upon speed. Elvers would be able to make virtually no progress against water currents >50 cm s−1. Drift in coastal water currents and selective tidal transport probably involve swimming speeds below those tested in this study. Migration into freshwater streams undoubtedly involves avoidance of free stream speeds and a combination of burst and sustained swimming.  相似文献   

8.
Endurance swimming of diploid and triploid Atlantic salmon   总被引:1,自引:0,他引:1  
When groups of diploid (mean ±  s . e . fork length, L F) 33·0 ± 1·4 cm and triploid (35·3 ± 0·5 cm) Atlantic salmon Salmo salar were forced to swim at controlled speeds in a carefully monitored 10 m diameter 'annular' tank no significant difference was found between the maximum sustained swimming speeds ( U ms, maintainable for 200 min) where the fish swam at the limit of their aerobic capability. Diploids achieved 2·99 body lengths per second (bl s−1)(0·96 m s−1) and triploids sustained 2·91 bl s−1(1·02 m s−1). The selection of fish for the trials was based on their ability to swim with a moving pattern projected from a gantry rotating at the radius of the tank and the selection procedure did not prove to be significant by ploidy. A significant difference was found between the anaerobic capabilities of the fish measured as endurance times at their prolonged swimming speeds. During the course of the experimentation the voluntary swimming speed selected by the fish increased and the schooling behaviour improved. The effect of the curvature of the tank on the fish speeds was calculated (removing the curved effect of the tank increased the speed in either ploidy by 5·5%). Implications of the endurance times and speeds are discussed with reference to the aquaculture of triploid Atlantic salmon.  相似文献   

9.
When swimming at low speeds, steelhead trout and bluegill sunfish tilted the body at an angle to the mean swimming direction. Trout swam using continuous body/caudal fin undulation, with a positive (head-up) tilt angle ( 0 , degrees) that decreased with swimming speed ( u , cm s−1) according to: 0 =(164±96).u(−1.14±0.41) (regression coefficients; mean±2 s.e. ). Bluegill swimming gaits were more diverse and negative (head down) tilt angles were usual. Tilt angle was −3·0 ± 0.9° in pectoral fin swimming at speeds of approximately 0.2–1.7 body length s−1 (Ls−1; 3–24 cm s−1), −4.5 ±2.6° during pectoral fin plus body/caudal fin swimming at 1·2–1·7 L s−1 (17–24cm s−1), and −5.0± 1.0° during continuous body/caudal fin swimming at 1.6 and 2.5 L s−1 (22 and 35cm s−1). At higher speeds, bluegill used burst-and-coast swimming for which the tilt angle was 0.1±0.6°. These observations suggest that tilting is a general phenomenon of low speed swimming at which stabilizers lose their effectiveness. Tilting is interpreted as an active compensatory mechanism associated with increased drag and concomitant increased propulsor velocities to provide better stabilizing forces. Increased drag associated with trimming also explains the well-known observation that the relationship between tail-beat frequency and swimming speed does not pass through the origin. Energy dissipated because of the drag increases at low swimming speeds is presumably smaller than that which would occur with unstable swimming.  相似文献   

10.
Abstract. Females of the specialist parasitoid, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), were released in a wind tunnel into host-odour plumes dispersed by winds of three velocities and winds whose speed was changed while the wasps were engaged in upwind flight. In steady winds of 61, 122 and 183 cms--1, wasps maintained similar 'preferred' ground speeds by adjusting their airspeed, while turning to a lesser degree as wind velocity increased. In winds of changing velocity (either increasing or decreasing within a 60–100 cm s-1 range), wasps lowered their rate of upwind progress, leading to more tortuous tracks. During changing wind speeds longitudinal image flow decreased. Wasps flying in host-odour plumes 10 cm and 20 cm above the flight tunnel floor in a 122 cm s-1 wind had similar ground speeds; thus their rate of ventral visual image flow varied two-fold. M.croceipes may 'aim' upwind by comparing how changes in the course angle vary with the direction of visual image flow. During changing wind velocities the relationship between changes in visual and flight muscle generated torque is ambiguous. Under these conditions most wasps cast, a manoeuvre characterized by wide lateral excursions across the wind without upwind progress. Once wind speed stabilizes, flight straightens out and upwind flight resumes.  相似文献   

11.
The endurance of threespine sticklebacks, Gasterosteus aculeatus , swimming with pectoral fin locomotion at 20° C in a laboratory flume was measured. Each trial lasted a maximum of 480 min. At a speed of 4 body lengths per sec (L s−1) all fish were still swimming at the end of the trial, but endurance decreased at higher speeds. At speeds of 5 or 6 L s−1 (20–30 cm s−1) a few fish still maintained labriform locomotion for the 480 min. However, at a speed of 7 L s−1 all fish furled their pectoral fins and used body and caudal fin propulsion but fatigued rapidly. During sustained swimming, fish could cover distances of 6 km or more. No significant differences between males and females were found.  相似文献   

12.
Rainbow trout were trained for 3–4 weeks in a flume at swimming speeds of 1, 2 and 3 l s−1. For each experiment growth rates were estimated and by measuring the hypertrophy of red and mosaic skeletal muscle fibres their function was described at particular swimming speeds and compared with earlier experiments on coalfish using the same technique.
Maximum growth, compared with controls in still water, occurred at swimming speeds of 1 l s−1. At this speed the trout mosaic muscle fibres hypertrophied by 40% but the red muscle fibres showed only a 25% hypertrophy. It is suggested that natural swimming speeds are close to 1Ls−l and the trout mosaic fibres are better adapted for use at this speed in comparison with coalfish white muscle fibres.  相似文献   

13.
Flight characteristics of birds:   总被引:3,自引:0,他引:3  
BRUNO BRUDERER  REAS BOLDT 《Ibis》2001,143(2):178-204
This is the first part of a study on flight characteristics of birds and presents an annotated list of flight speeds of 139 western Palearctic species. All measurements were taken with the same tracking radar and corrected for wind influence according to radar-tracked wind-measuring balloons. Graphical presentation of the birds' air speeds emphasizes the wide variation of speeds within species and allows easy comparison between taxonomic groups, species, and types of flight. Unlike theoretical predictions, speeds increase only slightly with size. The larger species seem to be increasingly limited to speeds close to their speed of minimum power consumption Vmp',. Released birds, apparently reluctant to depart with migratory speed, fly at considerably lower speeds than migrating conspecifics. While large birds seem to be limited to speeds around V mp', smaller birds seem to be capable of selecting between various speeds, approaching predicted V mp, when tending to remain airborne at low cost, but flying at much higher speeds when tending to make best progress at low cost (around predicted speed of maximum range V mr,). Predictions of air speeds by aerodynamic models proved to be too low for small birds because the models do not account for the gain in speed attained by the reduction in profile drag during bounding flight of small passerines. The models predict excessive speeds for large birds because the power output available for flight seems to decline much more with size than previously assumed.  相似文献   

14.
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.  相似文献   

15.
Flight is energetically very costly. For birds the mechanicalpower in relation to airspeed is characterized by a U-shapedfunction. From this function we can derive optimal flight speedsassociated with minimum power (Vmp), minimum cost of transport(Vmr) and minimum overall time of migration (Vmt). Since flightis energetically so costly, aerial displays and song flightcan potentially serve as signals reliably indicating the individualquality or resource potential of the signaler. In order to maximizethe amount of song flight produced, we expect Vmp during songflight, while during migration we rather expect Vmr or Vmv Wecompared flight speeds of skylarks (Alauda arvensis) duringsong flight and migration flight, respectively. In this speciespredicted Vmp = 5.5 m/s, Vmr = 10.5 m/s, and Vmt = 12.1 m/s.The preferred airspeed during song flight did not differ significantlyfrom the predicted Vmp, while airspeed during migration wassignificantly higher than Vmr and Vmp indicating that flightspeed is a flexible trait that birds adjust to different situations.Why the skylarks speed up so much on migration is still unclear,but it may be that due to the shape of the predicted power curve,variation in cost of transport at high speeds is relativelysmall.  相似文献   

16.
A flow-through respirometer and swim tunnel was used to estimate the gait transition speed ( U p-c) of striped surfperch Embiotoca lateralis , a labriform swimmer, and to investigate metabolic costs associated with gait transition. The U p-c was defined as the lowest speed at which fish decrease the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s−1, L F s−1) was rare (<10% of the total time). Tail movements at these low speeds appeared to be associated with occasional slow manoeuvres rather than providing power. As speed was increased beyond U p-c, pectoral fin (PF) frequencies kept increasing when the tail was not used, while they did not when PF locomotion was aided by the tail. At these high speeds, the tail was employed for 40–50% of the time, either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport ( C T) decreased with increasing speed, and then levelled off near U p-c. When speeds ≥ U p-c are considered, C T is higher than the theoretical curve extrapolated for PF swimming, suggesting that PF swimming appears to be higher energetically less costly than undulatory swimming using the tail.  相似文献   

17.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

18.
Abstract. Gas exchange measurements were made on single leaves of three C3 and one C4 species at air speeds of 0.4 and 4.0 m s−1 to determine if boundary layer conductance substantially affected the substomatal pressure of carbon dioxide. Boundary layer conductances to water vapour were 0.4 to 0.5 mol m−2 s−1 at the lower air speed, and 1.2 to 1.5 mol m−2 s−1 at the higher air speed. Substomatal carbon dioxide pressures were about 5 Pa lower at low boundary layer conductance in the C3 species, and about 3 Pa lower in the C4 species when measurements were made at high and moderate photosynthetic photon flux densities. No evidence of stomatal adjustment to altered boundary layer conductance was found. Photosynthetic rates at high photon flux densities were reduced by about 20% at the low air speed in the C3 species. The commonly reported values of substomatal carbon dioxide pressure for C3 and C4 species were found to occur only when measurements were made at the higher air speed.  相似文献   

19.
SUMMARY. A population of Asellus aquaticus in Wistow Lake, England, was sampled at monthly intervals from September 1973 to September 1974. The mean population density was 586 m−2 in autumn 1973 but it fell to 67 m−2 by autumn 1974. Evidence suggests that the lower density in autumn 1974 was due to premature mortality of gravid females. The cause of this is not known.
Gravid females were present from February to June and July to September, giving rise to spring and autumn cohorts. The larger members of the spring cohort reproduced in the autumn, the remainder in the following spring. The autumn cohort reproduced mainly in the following spring but later than the spring cohort. The bimodal length-frequency curves were analysed to separate the two cohorts and to estimate growth and production of each cohort separately. The overwintering spring cohort had a faster relative growth rate than the smaller individuals of the autumn cohort. Thus the spring cohort showed a P/B ratio of 2.62 for the period September–April compared with a ratio of 1.81 for the autumn cohort. The highest ratio of 6.42 was shown by the spring cohort in the summer (May–September).
Annual population production (P) was 3004.9 mg dry wt m−2 from a mean biomass (B) of 757.2 mg dry wt m−2. The P/B ratio of 3.96 is double the value reported for A. aquaticus in Sweden.  相似文献   

20.
Arctic waders often build up large fat loads and complete their migratory journeys by a few long-distance flights between traditional staging sites. Optimal fat loads and choices of staging sites differ depending on whether the birds are adapted to minimize energy or time spent on migration. In the latter case, we predict that the birds will depart for the next staging site when the instantaneous speed of migration expected after arrival at the next site, exceeds the corresponding speed at the departure site. The instantaneous migration speed is a function of the rate of fat deposition and the current fat load. As a consequence of this, overloading (birds deposit larger fat loads than needed merely for covering the flight distance to the next destination) and by-passing of possible, but low-quality staging sites, are expected under specific conditions in time-selected migration.
Estimates of fat deposition rates and departure fat loads were obtained by captures of Knots Calidris canutus , Sanderlings C. alba and Turnstones Arenaria interpres in W. Iceland during spring migration. Further fat deposition data referring to spring migration of these species were compiled from the literature. Fat deposition rates at different sites, as measured by the daily gain in mass relative to lean body-mass, range between 1.0 and 3.6%/day, and departure fuel loads (in % of lean body-mass) between 27 and 73%.
Comparison with flight range estimates suggests that overloading may be a regular phenomenon during spring migration of Knots, Sanderlings and Turnstones. Furthermore, fat deposition rates at different staging sites, and the general difference in migration patterns between spring and autumn, indicate that by-passing of possible staging sites may well occur. Hence, it cannot be excluded that the waders' migratory habits primarily serve to maximize the overall speed of migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号