首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
sigmaS (RpoS) is the master regulator of the general stress response in Escherichia coli. Several stresses increase cellular sigmaS levels by inhibiting proteolysis of sigmaS, which under non-stress conditions is a highly unstable protein. For this ClpXP-dependent degradation, the response regulator RssB acts as a recognition factor, with RssB affinity for sigmaS being modulated by phosphorylation. Here, we demonstrate that RssB can also act like an anti-sigma factor for sigmaS in vivo, i.e. RssB can inhibit the expression of sigmaS-dependent genes in the presence of high sigmaS levels. This becomes apparent when (i) the cellular RssB/sigmaS ratio is at least somewhat elevated and (ii) proteolysis is reduced (for example in stationary phase) or eliminated (for example in a clpP mutant). Two modes of inhibition of sigmaS by RssB can be distinguished. The 'catalytic' mode is observed in stationary phase cells with a substoichiometric RssB/sigmaS ratio, requires ClpP and therefore probably corresponds to sequestering of sigmaS to Clp protease (even though sigmaS is not degraded). The 'stoichiometric' mode occurs in clpP mutant cells upon overproduction of RssB to levels that are equal to those of sigmaS, and therefore probably involves binary complex formation between RssB and sigmaS. We also show that, under standard laboratory conditions, the cellular level of RssB is more than 20-fold lower than that of sigmaS and is not significantly controlled by stresses that upregulate sigmaS. We therefore propose that antisigma factor activity of RssB may play a role under not yet identified growth conditions (which may result in RssB induction), or that RssB is a former antisigma factor that during evolution was recruited to serve as a recognition factor for proteolysis.  相似文献   

2.
In growing Escherichia coli cells, the master regulator of the general stress response, sigmaS (RpoS), is subject to rapid proteolysis. In response to stresses such as sudden carbon starvation, osmotic upshift or shift to acidic pH, sigmaS degradation is inhibited, sigmaS accumulates and numerous sigmaS-dependent genes with stress-protective functions are activated. sigmaS proteolysis is dependent on ClpXP protease and the response regulator RssB, whose phosphorylated form binds directly to sigmaS in vitro. Here, we show that substitutions of aspartate 58 (D58) in RssB, which result in higher sigmaS levels in vivo, produce RssB variants unable to bind sigmaS in vitro. Thus, RssB is the direct substrate recognition factor in sigmaS proteolysis, whose affinity for sigmaS depends on phosphorylation of its D58 residue. RssB does not dimerize or oligomerize upon this phosphorylation and sigmaS binding, and RssB and sigmaS exhibit a 1:1 stoichiometry in the complex. The receiver as well as the output domain of RssB are required for sigmaS binding (as shown in vivo and in vitro) and for complementation of an rssB null mutation. Thus, the N-terminal receiver domain plays an active and positive role in RssB function. Finally, we demonstrate that RssB is not co-degraded with sigmaS, i.e. RssB has a catalytic role in the initiation of sigmaS turnover. A model is presented that integrates the details of RssB-sigmaS interaction, the RssB catalytic cycle and potential stress signal input in the control of sigmaS proteolysis.  相似文献   

3.
σ S, the stationary phase sigma factor of Escherichia coli and Salmonella , is regulated at multiple levels. The σS protein is unstable during exponential growth and is stabilized during stationary phase and after various stress treatments. Degradation requires both the ClpXP protease and the adaptor RssB. The small antiadaptor protein IraP is made in response to phosphate starvation and interacts with RssB, causing σS stabilization under this stress condition. IraP is essential for σS stabilization in some but not all starvation conditions, suggesting the existence of other anti-adaptor proteins. We report here the identification of new regulators of σS stability, important under other stress conditions. IraM (inhibitor of RssB activity during Magnesium starvation) and IraD (inhibitor of RssB activity after DNA damage) inhibit σS proteolysis both in vivo and in vitro . Our results reveal that multiple anti-adaptor proteins allow the regulation of σS stability through the regulation of RssB activity under a variety of stress conditions.  相似文献   

4.
The alternate sigma factor sigmaS plays an important role in the survival of Salmonella typhimurium following sudden encounters with a variety of stress conditions. The level of sigmaS is very low in rapidly growing cells but dramatically increases as those cells encounter environmental stress or enter into stationary phase. This increase is due in large measure to the stabilization of sigmaS protein against degradation by the ClpXP protease. The MviA protein, also known as RssB or SprE in Escherichia coli, is a putative member of a two component signal transduction system that plays a central role in facilitating sigmaS degradation by ClpXP. In contrast to most two-component systems, MviA does not appear to regulate gene expression but is believed to interact directly with sigmaS and somehow facilitate degradation. We now provide evidence that MviA(RssB) directly interacts both with sigmaS and ClpX in vivo, presumably enabling presentation of sigmaS to the ClpP protease. Interactions were demonstrated using a bacterial two-hybrid system in which sigmaS, MviA, and ClpX were fused to separate moieties of Bordetella pertussis CyaA (adenylate cyclase). Paired hybrid plasmids containing Cya'-MviA/RpoS-'Cya or Cya'-MviA/ClpX-'Cya successfully reconstituted adenylate cyclase activity in both S. typhimurium and E. coli. However, no direct interactions were detected between ClpX and RpoS. A second series of experiments has indicated that the interaction between MviA and sigmaS requires the N-terminus but not the C-terminus of MviA. Cellular levels of MviA appear to be very low in the cell based on lacZ fusion, Western blot and Northern blot analyses suggesting a catalytic role for MviA in sigmaS degradation. Mutagenesis of MviA residue D58, a canonical residue subject to phosphorylation in many two-component systems, decreased the ability of MviA to facilitate sigmaS turnover in vivo confirming that phosphorylation of MviA increases MviA activity.  相似文献   

5.
6.
The Escherichia coli starvation-induced DNA protection protein Dps was observed to be degraded rapidly during exponential growth. This turnover is dependent on the clpP and clpX genes. The clpA gene is not required for Dps proteolysis, suggesting that Dps is a substrate for ClpXP protease but not for ClpAP protease. Dps proteolysis was found to be highly regulated. Upon carbon starvation, Dps is stabilized, which together with increased Dps synthesis allows strong accumulation of Dps in the stationary phase. The addition of glucose to starving cells results in rapid resumption of Dps proteolysis by ClpXP. Oxidative stress also leads to efficient stabilization of Dps. After hyperosmotic shift, however, proteolysis remains unaffected. Thus, regulated proteolysis of Dps strongly contributes to controlling Dps levels under very specific stress conditions. In contrast to the regulated degradation of RpoS by ClpXP, Dps proteolysis is independent of the recognition factor RssB. In addition, during starvation, clpP and, to a somewhat lesser extent, clpA are involved in maintaining ongoing Dps synthesis (acting at the level of Dps translation), which is required for strong Dps accumulation in long-term stationary phase cells. In summary, both ClpXP and ClpAP exert significant control of Dps levels by affecting log phase stability and stationary phase synthesis of Dps respectively.  相似文献   

7.
In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two‐domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3 . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a “meta‐active” state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y–T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.  相似文献   

8.
sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.  相似文献   

9.
10.
11.
σS (RpoS) is a highly unstable global regulatory protein in Escherichia coli , whose degradation is inhibited by various stress signals, such as carbon starvation, high osmolarity and heat shock. As a consequence, these stresses result in the induction of σS-regulated stress-protective proteins. The two-component-type response regulator, RssB, is essential for the rapid proteolysis of σS and is probably involved in the transduction of some of these stress signals. Acetyl phosphate can be used as a phosphodonor for the phosphorylation of various response regulators in vitro and, in the absence of the cognate sensor kinases, acetyl phosphate can also modulate the activities of several response regulators in vivo . Here, we demonstrate increased in vivo half-lives of σS and the RpoS742::LacZ hybrid protein (also a substrate for RssB-dependent proteolysis) in acetyl phosphate-free ( pta – ackA ) deletion mutants, even though no sensor kinase was eliminated. The in vivo data indicate that acetyl phosphate acts through the response regulator, RssB. In vitro , efficient phosphotransfer from radiolabelled acetyl phosphate to the Asp-58 residue of RssB (the expected site of phosphorylation in the RssB receiver domain) was observed. Via such phosphorylation, acetyl phosphate may thus modulate RssB activity even in an otherwise wild-type background. While acetyl phosphate is not essential for the transduction of specific environmental stress signals, it could play the role of a modulator of RssB-dependent proteolysis that responds to the metabolic status of the cells reflected in the highly variable cellular acetyl phosphate concentration.  相似文献   

12.
13.
The hfq-encoded RNA-binding protein HF-I has long been known as a host factor for phage Qbeta RNA replication and has recently been shown to be essential for translation of rpoS, which encodes the sigmaS subunit of RNA polymerase. Here we demonstrate that an hfq null mutant does not synthesize glycogen, is starvation and multiple stress sensitive, and exhibits strongly reduced expression of representative sigmaS-regulated genes. These phenotypes are consistent with strongly reduced sigmaS levels in the hfq mutant. However, the analysis of global protein synthesis patterns on two-dimensional O'Farrell gels indicates that approximately 40% of the more than 30 proteins whose syntheses are altered in the hfq null mutant are not affected by an rpoS mutation. We conclude that HF-I is a global regulator involved in the regulation of expression of sigmaS and sigmaS-independent genes.  相似文献   

14.
Different environmental stimuli cause bacteria to exchange the sigma subunit in the RNA polymerase (RNAP) and, thereby, tune their gene expression according to the newly emerging needs. Sigma factors are usually thought to recognize clearly distinguishable promoter DNA determinants, and thereby activate distinct gene sets, known as their regulons. In this review, we illustrate how the principle sigma factor in stationary phase and in stressful conditions in Escherichia coli, sigmaS (RpoS), can specifically target its large regulon in vivo, although it is known to recognize the same core promoter elements in vitro as the housekeeping sigma factor, sigma70 (RpoD). Variable combinations of cis-acting promoter features and trans-acting protein factors determine whether a promoter is recognized by RNAP containing sigmaS or sigma70, or by both holoenzymes. How these promoter features impose sigmaS selectivity is further discussed. Moreover, additional pathways allow sigmaS to compete more efficiently than sigma70 for limiting amounts of core RNAP (E) and thereby enhance EsigmaS formation and effectiveness. Finally, these topics are discussed in the context of sigma factor evolution and the benefits a cell gains from retaining competing and closely related sigma factors with overlapping sets of target genes.  相似文献   

15.
Regulated degradation of RpoS requires RssB and ClpXP protease. Mutations in hns increase both RpoS synthesis and stability, causing a twofold increase in synthesis and almost complete stabilization of RpoS, independent of effects on synthesis and independent of phosphorylation of RssB. This suggests that H-NS regulates an RssB inhibitor or inhibitors.  相似文献   

16.
In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate.  相似文献   

17.
The sigmaE regulon has been shown to perform a novel function that causes dead-cell lysis specific to the early stationary phase in addition to its well-known role in the extracytoplasmic stress response in Escherichia coli. Here, the effect of sigmaS as a general stress-responsive sigma factor on sigmaE-directed cell lysis was investigated. The lysis phenomena were observed in both rpoS mutant and parental strains constitutively expressing active sigmaE, but the former lysis occurred at a relatively early stage compared to the latter. Based on these results and experiments with hydrogen peroxide, we propose that some stresses generate living but non-culturable cells, which are subject to sigmaE-directed cell lysis.  相似文献   

18.
The sigmaS (or RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli. While nearly absent in rapidly growing cells, sigmaS is strongly induced during entry into stationary phase and/or many other stress conditions and is essential for the expression of multiple stress resistances. Genome-wide expression profiling data presented here indicate that up to 10% of the E. coli genes are under direct or indirect control of sigmaS and that sigmaS should be considered a second vegetative sigma factor with a major impact not only on stress tolerance but on the entire cell physiology under nonoptimal growth conditions. This large data set allowed us to unequivocally identify a sigmaS consensus promoter in silico. Moreover, our results suggest that sigmaS-dependent genes represent a regulatory network with complex internal control (as exemplified by the acid resistance genes). This network also exhibits extensive regulatory overlaps with other global regulons (e.g., the cyclic AMP receptor protein regulon). In addition, the global regulatory protein Lrp was found to affect sigmaS and/or sigma70 selectivity of many promoters. These observations indicate that certain modules of the sigmaS-dependent general stress response can be temporarily recruited by stress-specific regulons, which are controlled by other stress-responsive regulators that act together with sigma70 RNA polymerase. Thus, not only the expression of genes within a regulatory network but also the architecture of the network itself can be subject to regulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号