首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

2.
This study reports the effect of salinity and inoculation on growth, ion uptake and nitrogen fixation byVigna radiata. A soil ECe level of 7.5 dS m−1 was quite detrimental causing about 60% decline in dry matter and grain yield of mungbean plants whereas a soil ECe level of 10.0 dS m−1 was almost toxic. In contrast most of the studied strains of Rhizobium were salt tolerant. Nevertheless, nodulation, nitrogen fixation and total nitrogen concentration in the plant was drastically affected at high salt concentration. A noticeable decline in acetylene reduction activity occurred when salinity level increased to 7.5 dS m−1.  相似文献   

3.
Summary No quantitative information is available regarding the salt tolerance of eggplant (Solanum melongena L.). The present study was conducted over a two-year period in small field plots irrigated by drip, where irrigation frequency was also a variable. The salt tolerance function may be described by the equation Yr=100–6.9 (ECe−1.1), where Yr=relative yield of fruit, ECe=the mean integrated electrical conductivity at the soil saturation extract, 1.1 dS/m=threshold salinity. Salt was distributed reasonably uniformly within the root zone.  相似文献   

4.
Schmidt  C.  He  Tie  Cramer  Grant R. 《Plant and Soil》1993,(1):415-418
Whole plant and callus cultures of different rapid-cycling Brassica species were treated with salinity (8 dS m-1) and/or supplemental Ca (up to 10 mM total concentration). None of these cultures responded to supplemental Ca with improved growth indicating that the salt tolerance of these genotypes was not dependent upon Ca.  相似文献   

5.
To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.  相似文献   

6.
In order to understand the physiological traits important in conferring salt tolerance in three barley genotypes, this study was performed under field conditions with three water salinity levels (2, 10, and 18 dS m–1). High salinity decreased net photosynthetic rate, transpiration rate, and stomatal conductance, K+ concentration, K+:Na+ ratio, and grain yield, but increased electrolyte leakage and Na+ content. Under 10 and 18 dS m–1 salinity, Khatam (salt-tolerant) had the maximum stomatal conductance, K+, K+:Na+ ratio, and the grain yield, and a minimum Na+ content and electrolyte leakage, whereas Morocco (salt-sensitive) had the lowest net photosynthetic rate, stomatal conductance, K+ content, K+:Na+ ratio, and grain yield, and the highest Na+ content and electrolyte leakage. This study showed that tolerant genotypes of barley may avoid Na+ accumulation in aboveground parts, facilitating a higher photosynthetic rate and higher grain yield.  相似文献   

7.
Grieve  C.M.  Suarez  D.L. 《Plant and Soil》1997,192(2):277-283
Drainage water reuse systems have been proposed for the west side of the San Joaquin Valley of California in order to reduce the volumes of water requiring disposal. Implementation of this system requires development of a cropping system with successively higher salt tolerance. A major limitation is the need to identify alternate species that will be suitable as the final, most salt tolerant crop in the series. These crops must be productive when irrigated with waters that are typically high in sulfate salinity and may be contaminated with potentially toxic trace elements. This study was initiated to evaluate the interactive effects of sulfate salinity and selenium on biomass production and mineral content of purslane (Portulaca oleracea). Plants were grown in greenhouse sand cultures and irrigated four times daily. Treatments consisted of three salinity levels with electrical conductivities (ECi) of 2.1, 15.2, and 28.5 dS m–1, and two selenium levels, 0 and 2.3 mg L–1. In the initial harvests, shoot dry matter was reduced by 15 to 30% at 15.2 dS m–1 and by 80 to 90% at 28.5 dS m–1. Regrowth after clipping above the first node was vigorous and biomass from plants irrigated with 15.2 dS m–1 water was nearly double that from the 2 dS m–1 treatment. Purslane appears to be an excellent candidate for inclusion in saline drainage water reuse systems. It is (i) highly tolerant of both chloride- and sulfate-dominated salinities, (ii) a moderate selenium accumulator in the sulfate-system, and (iii) a valuable, nutritive vegetable crop for human consumption and for livestock forage.  相似文献   

8.
Abstract

IRm6, an improved useful, EMS induced mutant of IR8 rice exhibits higher salt tolerance than the parent variety at all the growth stages. High salinity levels reduced germination per cent, early seedling growth and mature plant height in both the genotypes. Roots were more sensitive to salinity than shoots. Within seven days from germination, IRm6 accumulated three times more proline than IR8. Toxicity of individual salt concentrations was in order of NaCl>Na2SO4>CaCl2. At germination and early seedling stages, dry weight of the seedling increased while fresh weight decreased with the rise in salinity unlike later growth stages when both fresh and dry weights of mature plants decreased under salt stress. All the yield components were adversely affected by varying degrees of saline treatments. The order of their contributions in final grain yield reduction was, productive tiller number>fertile grain number>grain specific density>1,000 grain weight. Tillering stage was most sensitive to salinity. Grain yield losses between 27-43% in IR8 and 14-30% in IRm6 occurred after salt treatments at flowering and tillering stages, respectively.  相似文献   

9.
Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of fruit weight and quality under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock ‘Maxifort’ and grown under three levels of elevated soil salinity (EC 3.80 dS m?1, 6.95 dS m?1 and 9.12 dS m?1). Fruit weight reduction of grafted plants was lower (about 20–30%) in comparison with non‐grafted ones. Salt stress at the second salinity level (EC 6.95 dS m?1) induced the highest alteration of examined growth and quality parameters. The total increase of phenols, flavonoids, ascorbate and lycopene content in the fruits of both grafted and non‐grafted plants for both cultivars had a similar trend and intensity, though some inter‐cultivar variation was observed. The possibility of grafting tomato plants to improve salt tolerance without fruit quality loss is discussed.  相似文献   

10.
Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino- cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a salt-impacted (~50 dS/m) farm field, and their ability to promote plant growth of barley and oats in saline soil was investigated in pouch assays (1% NaCl), greenhouse trials (9.4 dS/m), and field trials (6–24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%–150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt remediation are discussed.  相似文献   

11.
Anthropogenic activities and natural causes contribute to an increase in the area and degree of degraded saline wetlands in arid/semi‐arid and coastal regions. The objective of this study was to determine the salt tolerance of the seven aquatic plant species Phragmites australis, Arundo donax, Canna indica, Scirpus validus, Alternanthera philoxeroides, Phyllostachys heteroclada and Potederia cordata during asexual reproduction and continuous growth. The species were exposed to five salinity treatments from 0.3 (control) to 20 dS m?1 during a 30 day experiment. Data were collected on asexual reproduction and growth, chlorophyll content in leaves, Na+ and K+ concentrations, total nitrogen (TN) and total phosphorus (TP) concentrations in above‐ground biomass (AGB) and below‐ground biomass (BGB). The results showed that: 1) increase in salinity (especially at a salinity level of EC ≥15 dS m?1) generally inhibited the capacity for asexual reproduction and reduced the chlorophyll content of leaves; 2) total dry biomass of plants was significantly negatively related to asexual reproduction; 3) species‐specific salt tolerance mechanisms were reflected by the Na+ and K+ concentrations and Na+/K+ ratios in different parts of the plants; and 4) the absorption of TN and TP were inhibited at high salinity (i.e. EC = 20 dS m?1) in AGB and BGB of most tested plant species. However, salinity may enhance plant uptake of TN and TP under certain conditions (e.g. EC at 5, 10 and 15 dS m?1). In general, as compared to the other species tested, giant reed A. donax and alligator weed A. philoxeroides showed relatively high asexual reproduction and growth capacity under high salt stress, and these species should thus be considered as candidates for restoration of degraded saline wetlands and/or for decontaminating saline wastewater.  相似文献   

12.
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non‐invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+‐permeable voltage‐sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.  相似文献   

13.
In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw – 6 dS m−1) and extreme saline irrigation (ECiw – 10 dS m−1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3–4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw – 10 dSm−1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3–4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3–4 at ECiw – 10 dSm−1. The mean range of K+ content was 7.60–9.74% in roots and 4.21–6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw – 10 dSm−1. At ECiw – 10 dSm−1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3–4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3–4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.  相似文献   

14.
Distichlis spicata and Suaeda aegyptiaca are two potential halophytic plant species for bioremediation of salt degraded soils, and development of saline agriculture. The physiological responses of the species to different levels of salinity (EC 0, 12, 24, 36, and 48 dS/m) in a controlled environment experiment were studied. Both species showed a high level of tolerance to elevated concentrations of salt in the irrigation water. The shoot fresh and dry weights in S. aegyptiaca increased till 36 dS/m and were sustained under 48 dS/m while in D. spicata, both parameters decreased as salinity increased. Glycine betaine accumulation did not change in D. spicata with increasing salinity, whereas proline content revealed a marked increase of 7.13 fold in 48 dS/m salinity compared to the control, which showed its critical osmoprotection role in the plant. In S. aegyptiaca, both osmolytes content significantly increased at high salinity levels (36 and 48 dS/m) up to 3.22 and 2.0 folds, respectively. Overall, S. aegyptiaca had a better potential of Na+ phytoremediation, and tolerated higher salinity compared to D. spicata. In contrast, the vigorous root and rhizome growth in D. spicata made it a proper solution for protecting the soils against further erosion under saline conditions.  相似文献   

15.
Saline water resources are abundant in the coastal areas of south China. Most of these resources still have not been effectively utilized. A 3-year study on the effects of saline water irrigation on tomato yield, quality and blossom-end rot (BER) was conducted at different lower limits of soil matric potential (-10 kPa, -20 kPa, -30 kPa, -40 kPa and -50 kPa). Saline water differing in electrical conductivity (EC) (3 dS/m, 4 dS/m, 4.5 dS/m, 5 dS/m and 5.5 dS/m) was supplied to the plant after the seedling establishment. In all three years, irrigation water with 5.5 dS/m salinity reduced the maximum leaf area index (LAIm) and chlorophyll content the most significantly when compared with other salinity treatments. However, compared with the control treatment (CK), a slight increase in LAIm and chlorophyll content was observed with 3~4 dS/m salinity. Saline water improved tomato quality, including fruit density, soluble solid, total acid, vitamin C and the sugar-acid ratio. There was a positive relationship between the overall tomato quality and salinity of irrigation water, as analyzed by principal component analysis (PCA). The tomato yield decreased with increased salinity. The 5.5 dS/m treatment reduced the tomato yield (Yt) by 22.4~31.1%, 12.6~28.0% and 11.7~27.3%, respectively in 2012, 2013 and 2014, compared with CK. Moreover, a significant (P≤0.01) coupling effect of salinity and soil matric potential on Yt was detected. Saline water caused Yt to increase more markedly when the lower limit of soil matric potential was controlled at a relatively lower level. The critical salinity level that produced significant increases in the BERi was 3 dS/m~4 dS/m. Following the increase in BERi under saline water irrigation, marketable tomato yield (Ym) decreased by 8.9%~33.8% in 2012, 5.1%~30.4% in 2013 and 10.1%~32.3% in 2014 compared with CK. In terms of maintaining the Yt and Ym, the salinity of irrigation water should be controlled under 4 dS/m, and the lower limit of soil matric potential should be greater than -20 kPa.  相似文献   

16.
Two models, initially proposed by Van Genuchten (1983) for evaluating salinity-yield response curves at the adult stage, were applied to study the salinity response of 24 barley cultivars at the germination stage. According to the calculated salinity threshold, ECt (the solution electrical conductivity, EC, at which germination starts to decrease), and EC50 (the solution EC at which germination is reduced by 50%) parameters, both models give similar results, although model 2, a sigmoid-form curve, fits the observed data slightly better than model 1, a piecewise response function. Also, the results suggest that, for model 1, ECt seems to be the most reliable parameter for screening barley germplasm because it clearly discriminates the relative salt-tolerance of the studied cultivars and, furthermore, it basically determines their salinity response for the 100 to 50% germination interval. On the other hand, the model 1 s parameter — percent germination decrease per unit salinity increase bove ECt—is less relevant because of its smaller variation interval and lack of correlation with EC50, indicating that the salinity response of the studied cultivars for the 50% germination value is independent of this parameter.  相似文献   

17.
Mesquite plants (Prosopis glandulosa var. Torreyana) were grown in 2-m long columns 20 cm in diameter, and provided with a constant, stable ground water source 10 cm above the sealed base of the column. Ground water contained 0, 1 or 5 mM nitrate, or a mixed salt solution (1.4, 2.8, or 5.6 dS m-1) with the ionic ratios of ground water found in a field stand of Prosopis at Harper's Well (2.8 dS m-1). Water uptake in the highly salinized columns began to decrease relative to low salt columns when soil salinity probes 30 cm above the column base read approximately 28 dS m-1, a potential threshold for mesquite salt tolerance. Prosopis growth increased with increasing nitrate, and decreased with increasing salinity. Water use efficiency was little affected by treatment, averaging approximately 2 g dry matter L-1 water used. Most fine roots were recovered from a zone about 25 cm above the ground water surface where water content and aeration appeared to be optimal for root growth. Root-shoot ratio was little affected by nitrate, but increased slightly with increasing salinity. Plant tissue P concentrations tended to increase with increasing salinity and decrease with increasing N, approaching potentially deficient foliage concentrations at 5 mM nitrate. The whole-plant leaf samples increased in sodium concentration both with added salt and with added nitrate. Foliar manganese concentrations increased with increasing salt in the absence of nitrate. Concentrations of sodium in leaves were low (<10 g kg-1), considering the high salt concentrations in the ground water. Prosopis appears to exclude sodium very effectively, especially from its younger leaves. Although Prosopis is highly salt tolerant, the degree to which it utilizes soil nitrate in place of biologically fixed N may lower its salinity tolerance and affect its nutrient relations in phreatic environments.  相似文献   

18.
The use of efficient selection traits for screening under contrasting irrigation water salinity is a challenge for breeders. To identify patterns, grain yield (GY) and yield components (kernels m?2, thousand kernels weight), growth traits (plant height, biomass), flag leaf ion accumulation (Na+ and K+), carbon isotope composition (δ13Cgrain) and nitrogen concentration (Ngrain) of grains were assessed on 25 durum wheat genotypes (G) in two consecutive growing seasons (2010 and 2011), in three semi‐arid locations in Tunisia. Each location differed in their irrigation water salinity as measured by electrical conductivity: Echbika (S1, 6 dS m?1), Barrouta (S2, 12 dS m?1) and Sidi Bouzid (S3, 18 dS m?1). GY was shown to be negatively correlated to Ngrain as well as to δ13Cgrain. This is confirmed by a multiple linear regression analysis that showed that both δ13Cgrain and Ngrain were the major determinant components for GY variability under S3. A high genotypic variability was observed and the improved genotype Maali exhibited the most stable GY under the three irrigation water salinities and the two cropping seasons. Maali showed the lowest δ13Cgrain. This indicates that tolerance in durum wheat is likely to be correlated to the ability of maintaining a high stomatal conductance. According to our data suggests δ13Cgrain can be used for an efficient screening of salt tolerant durum wheat. Under our experimental conditions, Ngrain was shown to be highly correlated to δ13Cgrain and can therefore be easier‐to‐use trait to assess the tolerance to salinity.  相似文献   

19.
The effect of saline irrigation (ECiw 6 dS m?1 and 9 dS m?1) on the roots of Cicer arietinum L. genotypes was examined at morpho-physiological, biochemical and molecular levels. Reduction in root growth due to salinity was observed, but less effect was seen on the roots of genotypes KWR 108, ICCV 10, CSG 8962, and S7 as compared to the other genotypes. Cell turgor was maintained in tolerant genotypes through optimum water relations and osmoprotectants (proline and total soluble sugars) than the sensitive cultivars. Salinity caused oxidative stress as increased hydrogen peroxide and malondialdehyde were noticed, where low accumulation was observed in tolerant genotypes due to the higher activity of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and peroxidase). Na+/K+ ratio increased, but more increment was reported in sensitive cultivars. Gene expression studies depicted that genes encoding pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase got upregulated and that of proline dehydrogenase was downregulated and more fold change with respect to control was in the salt tolerant check CSG 8962 and the genotype KWR 108. Higher expression of the genes encoding reactive oxygen species scavenging enzymes namely, superoxide dismutase, catalase, peroxidase, and those involved in the ascorbate–glutathione cycle was noticed in KWR 108 and CSG 8962 than ICC 4463. Enhanced expression of sodium transporter HKT1 due to salinity can be correlated with ion homeostasis maintenance. Cumulative effects of osmolytes, enzymatic antioxidants and maintaining ion homeostasis in root enable chickpea plants to survive in saline environments.  相似文献   

20.
Cramer  Grant R. 《Plant and Soil》2003,253(1):233-244
This study focuses on the inhibitory effect of salinity on the leaf extension of three different grass species: Hordeum jubatum L., Hordeum vulgare L. and Zea mays L. Leaf elongation rates (LER) were measured on the third leaf of the plants. NaCl was added to the hydroponic solution (0, 40, 80 and 120 mM) and changes in LER were measured over time with a displacement transducer. Salinity inhibited LER immediately in all three species, and a new, but lower steady-state LER was reached within 5 h. The decrease in LER was proportional to the salinity level. Differences in salt tolerance (% of control LER) were evident between genotypes within 5 h after salinization, but the relative salt tolerance of the plant at this stage was not necessarily indicative of the long-term salt tolerance of the species. In general, H. jubatum was more tolerant than maize, which was more tolerant than barley to these short-term salinity stresses. In contrast, barley is more salt tolerant than maize over the long term. The mechanisms of inhibition of LER by salinity, as tested by the applied-tension technique, varied with the species examined, affecting either the apparent yield threshold, the hydraulic conductance of the whole plant or both. The cell wall extensibility was not significantly affected by salinity in the three species tested in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号