首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid peroxidation generates a variety of aldehydes, which includes free saturated and unsaturated aldehydes, and aldehydes that remain esterified to the phosphoglyceride backbone - the so-called 'core' aldehydes. However, little is known in regarding the vascular metabolism of these aldehydes. To identify biochemical pathways that metabolize free aldehydes, we examined the metabolism of 4-hydroxy-trans-2-nonenal in human aortic endothelial cells. Incubation of these cells with [3H]-HNE led to the generation of four main metabolites, i.e. glutathionyl HNE (GS-HNE), glutathionyl dihydroxynonene (GS-DHN), DHN and 4-hydroxynonanoic acid (HNA), which accounted for 5, 50, 6, and 23% of the total HNE metabolized. The conversion of GS-HNE to GS-DHN was inhibited by tolrestat, indicating that it is catalyzed by aldose reductase (AR). The AR was also found to be an efficient catalyst for the reduction of the core aldehyde - 1-palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, which is generated in minimally modified low-density lipoprotein, and activates the endothelium to bind monocytes. As determined by electrospray mass spectrometry, reduction of POVPC (m/z=594) by AR led to the formation of 1-palmitoyl-2- (5)-hydrovaleryl-sn-glycero-3-phosphorylcholine (PHVPC; m/z=596). These observations suggest that due to its ability to catalyze the reduction of lipid-derived aldehydes AR may be involved in preventing inflammation and diminishing oxidative stress during the early phases of atherogenesis.  相似文献   

2.
Oxidative stress-induced lipid peroxidation leads to the formation of cytotoxic and genotoxic 2-alkenals, such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). Lipid-derived reactive aldehydes are subject to phase-2 metabolism and are predominantly found as mercapturic acid (MA) conjugates in urine. This study shows evidence for the in vivo formation of ONE and its phase-1 metabolites, 4-oxo-2-nonen-1-ol (ONO) and 4-oxo-2-nonenoic acid (ONA). We have detected the MA conjugates of HNE, 1,4-dihydroxy-2-nonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), the lactone of HNA, ONE, ONO, and ONA in rat urine by liquid chromatography-tandem mass spectrometry comparison with synthetic standards prepared in our laboratory. CCl(4) treatment of rats, a widely accepted animal model of acute oxidative stress, resulted in a significant increase in the urinary levels of DHN-MA, HNA-MA lactone, ONE-MA, and ONA-MA. Our data suggest that conjugates of HNE and ONE metabolites have value as markers of in vivo oxidative stress and lipid peroxidation.  相似文献   

3.
Oxidative stress triggers the peroxidation of ω-6-polyunsaturated fatty acids to reactive lipid fragments, including (2E)-4-hydroxy-2-nonenal (HNE). We previously reported two parallel catabolic pathways of HNE. In this study, we report a novel metabolite that accumulates in rat liver perfused with HNE or 4-hydroxynonanoic acid (HNA), identified as 3-(5-oxotetrahydro-2-furanyl)propanoyl-CoA. In experiments using a combination of isotopic analysis and metabolomics studies, three catabolic pathways of HNE were delineated following HNE conversion to HNA. (i) HNA is ω-hydroxylated to 4,9-dihydroxynonanoic acid, which is subsequently oxidized to 4-hydroxynonanedioic acid. This is followed by the degradation of 4-hydroxynonanedioic acid via β-oxidation originating from C-9 of HNA breaking down to 4-hydroxynonanedioyl-CoA, 4-hydroxyheptanedioyl-CoA, or its lactone, 2-hydroxyglutaryl-CoA, and 2-ketoglutaric acid entering the citric acid cycle. (ii) ω-1-hydroxylation of HNA leads to 4,8-dihydroxynonanoic acid (4,8-DHNA), which is subsequently catabolized via two parallel pathways we previously reported. In catabolic pathway A, 4,8-DHNA is catabolized to 4-phospho-8-hydroxynonanoyl-CoA, 3,8-dihydroxynonanoyl-CoA, 6-hydroxyheptanoyl-CoA, 4-hydroxypentanoyl-CoA, propionyl-CoA, and acetyl-CoA. (iii) The catabolic pathway B of 4,8-DHNA leads to 2,6-dihydroxyheptanoyl-CoA, 5-hydroxyhexanoyl-CoA, 3-hydroxybutyryl-CoA, and acetyl-CoA. Both in vivo and in vitro experiments showed that HNE can be catabolically disposed via ω- and ω-1-oxidation in rat liver and kidney, with little activity in brain and heart. Dietary experiments showed that ω- and ω-1-hydroxylation of HNA in rat liver were dramatically up-regulated by a ketogenic diet, which lowered HNE basal level. HET0016 inhibition and mRNA expression level suggested that the cytochrome P450 4A are main enzymes responsible for the NADPH-dependent ω- and ω-1-hydroxylation of HNA/HNE.  相似文献   

4.
Phospholipid peroxidation generates a variety of aldehydes, which includes free saturated and unsaturated aldehydes, and aldehydes that remain esterified to the phosphoglyceride backbone — the so-called ‘core’ aldehydes. However, little is known in regarding the vascular metabolism of these aldehydes. To identify biochemical pathways that metabolize free aldehydes, we examined the metabolism of 4-hydroxy-trans-2-nonenal in human aortic endothelial cells. Incubation of these cells with [3H]-HNE led to the generation of four main metabolites, i.e. glutathionyl HNE (GS-HNE), glutathionyl dihydroxynonene (GS-DHN), DHN and 4-hydroxynonanoic acid (HNA), which accounted for 5, 50, 6, and 23% of the total HNE metabolized. The conversion of GS-HNE to GS-DHN was inhibited by tolrestat, indicating that it is catalyzed by aldose reductase (AR). The AR was also found to be an efficient catalyst for the reduction of the core aldehyde — 1-palmitoyl-2- (5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, which is generated in minimally modified low-density lipoprotein, and activates the endothelium to bind monocytes. As determined by electrospray mass spectrometry, reduction of POVPC (m/z=594) by AR led to the formation of 1-palmitoyl-2- (5)-hydrovaleryl-sn-glycero-3-phosphorylcholine (PHVPC; m/z=596). These observations suggest that due to its ability to catalyze the reduction of lipid-derived aldehydes AR may be involved in preventing inflammation and diminishing oxidative stress during the early phases of atherogenesis.  相似文献   

5.
Due to the cytotoxicity of 4-hydroxynonenal (HNE), and to the fact that this major product of lipid peroxidation is a rather long-living compound compared with reactive oxygen species, the capability of organisms to inactivate and eliminate HNE has received increasing attention during the last decade. Several recent in vivo studies have addressed the issue of the diffusion, kinetics, biotransformation and excretion of HNE. Part of these studies are primarily concerned with the toxicological significance of HNE biotransformation and more precisely with the metabolic pathways by which HNE is inactivated and eliminated. The other aim of in vivo metabolic study is the characterisation of end-metabolites, especially in urine, in order to develop specific and non-invasive biomarkers of lipid peroxidation. When HNE is administered intravenously or intraperitoneally, it is mainly excreted into urine and bile as conjugated metabolites, in a proportion that is dependent on the administration route. However, biliary metabolites undergo an enterohepatic cycle that limits the final excretion of faecal metabolites. Only a very low amount of metabolites is found to be bound to macromolecules. The main urinary metabolites are represented by two groups of compounds. One comes from the mercapturic acid formation from (i) 1,4 dihydroxynonene-glutathione (DHN-GSH) which originates from the conjugation of HNE with GSH by glutathione-S-transferases and the subsequent reduction of the aldehyde by a member of aldo-keto reductase superfamily; (ii) the lactone of 4-hydroxynonanoic-GSH (HNA-lactone-GSH) which originates from the conjugation of HNE followed by the oxidation of the aldehyde by aldehyde dehydrogenase; (iii) HNA-GSH which originates from the hydrolysis of the corresponding lactone. The other one is a group of metabolites issuing from the omega-hydroxylation of HNA or HNA-lactone by cytochromes P450 4A, followed eventually, in the case of omega-oxidized-HNA-lactone, by conjugation with GSH and subsequent mercapturic acid formation. Biliary metabolites are GSH or mercapturic acid conjugates of DHN, HNE and HNA. Stereochemical aspects of HNE metabolism are also discussed.  相似文献   

6.
Lipid peroxidation represents a significant source of erythrocyte dysfunction and aging. Because the toxicity of lipid peroxidation appears to be in part due to aldehydic end products, we examined, in rat erythrocytes, the metabolism of 4-hydroxy-trans-2-nonenal (HNE), one of the most abundant and toxic lipid-derived aldehydes. Packed erythrocytes, 0.1 ml, completely metabolized 20 nmoles of HNE in 20 min. The glutathione conjugate of HNE and 4-hydroxynonanoic acid (HNA) represented 70 and 25% of the total metabolism, respectively. Approximately 70% of the metabolites were extruded to the medium. Upon electrospray ionization mass spectrometry, the glutathione conjugate resolved into two distinct species corresponding to glutathionyl HNE (GS-HNE) and glutathionyl 1,4-dihydroxynonene (GS-DHN). The concentration of GS-DHN formed was twice that of GS-HNE. Inhibition of aldose reductase by sorbinil and tolrestat led to a selective decrease in the formation of GS-DHN, although the extent of HNE glutathiolation was unaffected. Inhibitors of aldehyde or alcohol dehydrogenase, i.e., cyanamide and 4-methyl pyrazole, had no effect on the formation of HNA and GS-DHN, indicating that these enzymes are not significant participants in the erythrocyte HNE metabolism. Thus, oxidation to HNA, conjugation with glutathione, and further reduction of the conjugate by aldose reductase appear to be the major pathways of HNE metabolism in erythrocytes. These pathways may be critical determinants of erythrocyte toxicity due to lipid peroxidation-derived aldehydes.  相似文献   

7.
The breakdown of polyunsaturated fatty acids (PUFAs) under conditions of oxidative stress results in the formation of lipid peroxidation (LPO) products. These LPO products such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) can contribute to the development of cardiovascular and neurodegenerative diseases and cancer. Conjugation with glutathione, followed by further metabolism to mercapturic acid (MA) conjugates, can mitigate the effects of these LPO products in disease development by facilitating their excretion from the body. We have developed a quantitative method to simultaneously assess levels of 4-oxo-2-nonen-1-ol (ONO)-MA, HNE-MA, and 1,4-dihydroxy-2-nonene (DHN)-MA in human urine samples utilizing isotope-dilution mass spectrometry. We are also able to detect 4-hydroxy-2-nonenoic acid (HNA)-MA, 4-hydroxy-2-nonenoic acid lactone (HNAL)-MA, and 4-oxo-2-nonenoic acid (ONA)-MA with this method. The detection of ONO-MA and ONA-MA in humans is significant because it demonstrates that HNE/ONE branching occurs in the breakdown of PUFAs and suggests that ONO may contribute to the harmful effects currently associated with HNE. We were able to show significant decreases in HNE-MA, DHN-MA, and total LPO-MA in a group of seven smokers upon smoking cessation. These data demonstrate the value of HNE and ONE metabolites as in vivo markers of oxidative stress.  相似文献   

8.
Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r = −0.815), intrinsic water use efficiency (WUEi; r = −0.643), net photosynthetic rate (r = −0.628), stomatal conductance (r = 0.511), and intracellular/intercellular CO2 concentration (r = 0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape.  相似文献   

9.
Proteins are vital to the overall structure of cells and to the function of cells in the form of enzymes. Thus the control of protein metabolism is among the most important aspects of cellular metabolism. Insulin’s major effect on protein metabolism in the adult animal is inhibition of protein degradation. This is via inhibition of proteasome activity via an interaction with insulin-degrading enzyme (IDE). IDE is responsible for the majority of cellular insulin degradation. We hypothesized that a reduction in IDE would reduce insulin degradation and insulin’s ability to inhibit protein degradation. HepG2 cells were transfected with siRNA against human IDE and insulin degradation and protein degradation measured. Both IDE mRNA and protein were reduced by >50% in the IDE siRNA transfected cells. Insulin degradation was reduced by approximately 50%. Cells were labeled with [3H]-leucine to investigate protein degradation. Short-lived protein degradation was unchanged in the cells with reduced IDE expression. Long-lived and very-long-lived protein degradation was reduced in the cells with reduced IDE expression (14.0 ± 0.16 vs. 12.5 ± 0.07%/4 h (long-lived), 9.6 ± 2.2% vs. 7.3 ± 0.2%/3 h (very-long-lived), control vs. IDE transfected, respectively, P < 0.005). The inhibition of protein degradation by insulin was reduced 37-76% by a decreased expression of IDE in HepG2 cells. This shows that IDE is involved in cellular insulin metabolism and provides further evidence that insulin inhibits protein degradation via an interaction with IDE.  相似文献   

10.
Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.  相似文献   

11.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   

12.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

13.
Latif SA  Shen M  Ge RS  Sottas CM  Hardy MP  Morris DJ 《Steroids》2011,76(7):682-689
Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C19- and C21-11β-OH-steroids, in the presence of [3H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p < 0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM).Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP+ regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems.  相似文献   

14.
Human papillomavirus (HPV) infection is an established etiological factor for cervical cancer. Epidemiological studies suggest that smoking in combination with HPV infection plays a significant role in the etiology of this disease. We have previously shown that the tobacco carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is present in human cervical mucus. Here, we hypothesized that treatment of HPV-16-immortalized human ectocervical cells (Ecto1/E6E7) with NNK would alter the expression of genes involved in cellular transformation. Ecto1/E6E7 cells were treated with water (vehicle control) alone or with 1 μM, 10 μM, and 100 μM of NNK in water for 12 weeks. The colony-forming efficiency increased following NNK treatment; the maximum effect was observed after 12 weeks with 100 μM NNK. Microarray analysis revealed that, independent of the dose of NNK, expression of 30 genes was significantly altered; 22 of these genes showed a dose-response pattern. Genes identified are categorized as immune response (LTB4R), RNA surveillance pathway (SMG1), metabolism (ALDH7A1), genes frequently expressed in later stages of neoplastic development (MT1F), DNA binding (HIST3H3 and CHD1L), and protein biosynthesis (UBA52). Selected genes were confirmed by qRT-PCR. Western blot analysis indicates that phosphorylation of histone 3 at serine 10, a marker of cellular transformation, was up-regulated in cells treated with NNK. This is the first study showing that NNK can alter gene expression that may, in part, account for transformation of HPV-immortalized human cervical cells. The results support previous epidemiological observations that, in addition to HPV, tobacco smoking also plays an important role in the development of cervical cancer.  相似文献   

15.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

16.
4-hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert a multitude of biological, cytotoxic, and signal effects. Mammalian cells possess highly active pathways of HNE metabolism. The metabolic fate of HNE was investigated in various mammalian cells and organs such as hepatocytes, intestinal enterocytes, renal tubular cells, aortic and brain endothelial cells, synovial fibroblasts, neutrophils, thymocytes, heart, and tumor cells. The experiments were carried out at 37 degrees C at initial HNE concentrations between 1 microM--that means in the range of physiological and pathophysiologically relevant HNE levels--to 100 microM. In all cell types which were investigated, 90-95% of 100 microM HNE were degraded within 3 min of incubation. At 1 microM HNE the physiological blood serum level of about 0.1-0.2 microM was restored already after 10-30 s. As primary products of HNE in hepatocytes and other cell types the glutathione-HNE-1:1-conjugate, the hydroxynonenoic acid and the corresponding alcohol of HNE, the 1,4-dihydroxynonene, were identified. Furthermore, the beta-oxidation of hydroxynonenoic acid including the formation of water was demonstrated. The quantitative share of HNE binding to proteins was low with about 2-8% of total HNE consumption. The glycine-cysteine-HNE, cysteine-HNE adducts and the mercapturic acid from glutathione-HNE adduct were not formed in the most cell types, but in kidney cells and neutrophils. The rapid metabolism underlines the role of HNE degrading pathways in mammalian cells as important part of the secondary antioxidative defense mechanisms in order to protect proteins from modification by aldehydic lipid peroxidation products.  相似文献   

17.
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.  相似文献   

18.
Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3 has been detected at the outer leaflet of the plasma membrane and its membrane expression is a risk factor in a number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains unclear. We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bilayer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd = 9.2 × 10− 7 M) thanks to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the POPC lipids. HNE binds in a significantly weaker manner (Kd > 10− 5 M) making mostly electrostatic interactions via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil membrane.  相似文献   

19.
20.

Aim

This study sought to determine the role of white adipose tissue (WAT) metabolism in the prevention of insulin resistance (IR) by physical training (PT).

Main methods

Male C57BL/6 J mice were assigned into groups CHOW-SED (chow diet, sedentary; n = 15), CHOW-TR (chow diet, trained; n = 18), CAF-SED (cafeteria diet, sedentary; n = 15) and CAF-TR (cafeteria diet, trained; n = 18). PT consisted of running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks.

Key findings

PT prevented body weight and fat mass accretion in trained groups and prevented hyperglycemia, hyperinsulinemia, glucose intolerance and IR in the CAF-TR. The CAF-SED group presented higher leptin and free fatty acid and lower adiponectin serum levels compared with other groups. Lipolytic activity (in mmol/106 adipose cells) stimulated by isoproterenol increased in CHOW-TR (16347 ± 3005), CAF-SED (18110 ± 3788) and CAF-TR (15837 ± 2845) compared with CHOW-SED (8377 ± 2284). The CAF-SED group reduced FAS activity compared with CHOW-SED and CHOW-TR, reduced citrate synthase activity and increased DGAT2 content compared with other groups. Both trained groups reduced G6PDH activity and increased the expression of p-AMPK (Thr172) compared with sedentary groups. CAF-SED group had lower levels of AMPK, p-AMPK (Thr172), ACC and p-ACC (Ser79) compared with other groups.

Significance

The prevention of IR by PT is mediated by adaptations in WAT metabolism by improving lipolysis, preventing an increase in enzymes responsible for fatty acid esterification and by activating enzymes that improve fat oxidation instead of fat storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号