首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focused on the association of polymorphisms of the FADS2 gene with fatty acid profiles in egg yolk of eight Japanese quail lines selected for high and low ω-6:ω-3 PUFA ratio (h2 = 0.36–0.38). For the identification of polymorphisms within the FADS2 gene 1350 bp of cDNA sequence were obtained encoding 404 amino acids. Five synonymous SNPs were found by comparative sequencing of animals of the high and low lines. These SNPs were genotyped by single base extension on 160 Japanese quail. The association analysis, comprising analysis of variance and family based association test (FBAT), revealed significant effects of SNP3 and SNP4 genotypes on the egg yolk fatty acid profiles, especially the ω-6 and ω-3 PUFAs (P < 0.05). No effects of the other SNPs were found—indicating that these are not in linkage disequilibrium with the causal polymorphism. The results of this study promote FADS2 as a functional candidate gene for traits related to ω-6 and ω-3 PUFA concentration in the egg yolk.  相似文献   

2.
Mammalian cell viability is dependent on the supply of the essential fatty acids (EFAs) linoleic and α-linolenic acid. EFAs are converted into ω3- and ω6-polyunsaturated fatty acids (PUFAs), which are essential constituents of membrane phospholipids and precursors of eicosanoids, anandamide and docosanoids. Whether EFAs, PUFAs and eicosanoids are essential for cell viability has remained elusive. Here, we show that deletion of Δ6-fatty acid desaturase (FADS2) gene expression in the mouse abolishes the initial step in the enzymatic cascade of PUFA synthesis. The lack of PUFAs and eicosanoids does not impair the normal viability and lifespan of male and female fads2−/− mice, but causes sterility. We further provide the molecular evidence for a pivotal role of PUFA-substituted membrane phospholipids in Sertoli cell polarity and blood–testis barrier, and the gap junction network between granulosa cells of ovarian follicles. The fads2−/− mouse is an auxotrophic mutant. It is anticipated that FADS2 will become a major focus in membrane, haemostasis, inflammation and atherosclerosis research.  相似文献   

3.
Candida bombicola can synthesize monohydroxy fatty acid as a moiety of sophorose lipids. The hydroxy fatty acids contained in a major lactone were identified by GC-MS, after culturing with natural oils such as coconut, rapeseed, olive, and soybean oils. Hydroxy fatty acids of C18 and C16 were always synthesized, but differences were observed among the oils regarding the positions of hydroxyl groups, unsaturation, and composition of the fatty acids. A new C17 hydroxy acid was found without addition of oil.  相似文献   

4.
The properties of porcine platelet acyltransferases which catalyze the incorporation of unsaturated fatty acids into the 2 positions of phospholipids were compared with those of porcine liver microsomes and rat liver microsomes. There were significant differences in the relative rates of incorporation of acyl groups into phospholipids as catalyzed by the membranes from different species and organs. The 1-acylglycerophosphate acyltransferase system showed relatively broad specificity for saturated and unsaturated fatty acids, with 14- to 20-carbon chains, while unsaturated acyl-CoAs with 18- and 20-carbon chains were generally good substrates in the acylations of 1-acylglycerophosphocholine and 1-acylglycerophosphoinositol. ω-3 and ω-6 unsaturated fatty acids were recognized differently by different acyltransferase systems in platelets. When activities for combinations of ω-3 and ω-6 unsaturated acyl-CoAs with the same number of carbons and with similar number of double bonds were compared, ω-6 fatty acids were relatively more preferred substrates than ω-3 fatty acids for the 1-acylglycerophosphoinositol acyltransferase system as compared with 1-acylglycerophosphocholine acyltransferase system.  相似文献   

5.
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.  相似文献   

6.
The effects of ω-5 gliadin on wheat-dependent exercise-induced anaphylaxis (WDEIA) were investigated by using a mouse model. The gliadin fraction was prepared as a 70% ethanol-soluble solution, and ω-5 gliadin was purified by chromatography. Purified ω-5 gliadin was run on SDS-PAGE gel to reveal three bands with a molecular mass of 53-60 kDa and had the characteristic N-terminal sequence of ω-5 gliadin. The mice were sensitized to the gliadin fraction, and the anaphylactic response was assessed by measuring the body temperature and voluntary physical activity. An oral administration of ω-5 gliadin evoked a significant drop in both the body temperature and voluntary physical activity, similar to the effects of the whole gliadin fraction. ELISA and immunoblotting analyses revealed that the IgE expression from sensitized mice reacted most strongly to ω-5 gliadin. Taken together, these results indicate ω-5 gliadin to be a major allergen responsible for stimulating WDEIA in mice, with the characteristic potential for stimulating IgE production.  相似文献   

7.
Ceriporiopsis subvermispora is a selective white-rot fungus that secretes alk(en)ylitaconic acids named ceriporic acids, known as ion redox silencers. In this study, we analysed a series of extracellular lipid-related metabolites produced by the fungus and found that a wide variety of ceriporic acids and fatty acids, including those with odd-numbered and very long-chains, were produced in wood meal cultures. Two new ceriporic acids, (R)-3-[(Z)-tetradec-7-enyl]-itaconic acid (ceriporic acid E) and (R)-3-[(Z)-tetradec-5-enyl]-itaconic acid (ceriporic acid F), were for the first time identified by dimethyl disulfide derivatisation, followed by GC/EI-MS, (1)H and homonuclear J-resolved 2D NMR and feeding experiments with [(13)C-U] glucose coupled with multiple-stage mass spectrometry. In separation by GC and LC, a reversed correlation of elution sequences between a nonpolar GC column and an ODS-LC column for cis and trans isomers of ω7 and ω9 lipids was found, and the elution of new metabolites was in accordance with the prevailing theory. The biosynthetic precursors of ceriporic acid F can be proposed as oxaloacetate and 16:1Δ7-CoA. Because fatty acids biosynthesised from 16:1Δ7-CoA have been reported for only a limited number of organisms, the highly individual structure of ceriporic acid F is highlighted.  相似文献   

8.
New polymethylene nucleoside analogues with a β-dioxo function in the ω-position of their hydro-carbon chain, [7-(2-oxocyclohexyl)-7-oxoheptyl]purines, were synthesized, and their physicochemical properties were studied.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 288–294.Original Russian Text Copyright © 2005 by Kritzyn, Vepsalainen, Komissarov.For communication III, see [1].  相似文献   

9.
Rice bran oil (RBO), being naturally rich in antioxidants, is currently regarded as one of the health-beneficial edible oils. However, the RBO has essential linoleic acid (ω-6, C18:2) and α-linolenic acid (ω-3, C18:3) in nutritionally disproportionate level (~25:1), contrary to the WHO/FAO’s recommendation of ~5:1. Among few naturally occurring C18:3 enriched oil-seeds, Brassica juncea (Indian mustard) has almost equal proportion of ω-6 and ω-3 fatty acids in its oil due to the activity of microsomal ω-3 desaturase (Fad3), which converts C18:2–C18:3. Therefore, the full length Fad3 coding DNA sequence (CDS) was isolated from the developing seeds of B. juncea, functionally characterized and heterologously expressed for the nutritional enhancement of RBO. Sequence analysis revealed that the 1,134 bp long BjFad3 CDS corresponds to a polypeptide of 377 amino acids, which is highly (85–95 %) homologous to other known Fad3 enzymes of plant kingdom. The BjFad3 gene was initially characterized in transgenic tobacco to establish its linoleate desaturase activity. Thereafter, rice bran-specific expression of the BjFad3 was carried out to alter the fatty acid profile of RBO. Several independent transgenic lines of tobacco and rice plants were developed by Agrobacterium-mediated transformation. Standard molecular biological techniques were used to confirm the transgene integration in the respective genomes and subsequent in planta expression. The BjFad3 transgene expression correlated to the significant increase in C18:3 fatty acid content (up to tenfold) in both tobacco seed oil and RBO, and thereby improving the nutritionally desirable ω-6:ω-3 ratio (~2:1) in one of the transgenic rice lines.  相似文献   

10.
Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial β-oxidation pathway could be exploited to deliver and biotransform the prodrugs ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3- and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with ω-(2,6-dimethylphenoxy)alkanoic acids. 3- and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial β-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria.  相似文献   

11.
A method for the synthesis of long chain fatty acids substituted at the ω and ω-1 positions has been developed. The key step is the isomerization of the triple bond of an alkyn-1-ol from an internal position in the chain to the free terminus with a new, convenient reagent, sodium aminopropylamide (NaAPA). Standard functional group manipulations i.e., Jones oxidation, esterification and hydroboration of the triple bond are used to prepare ω-hydroxy fatty esters. The generality of the method is illustrated with syntheses of ω-hydroxy fatty esters with 24, 26, 28 and 30 carbon chains.In the 24 carbon series, hydration of the terminal triple bond of alkynoic ester 4a followed by reduction gave the (ω-1)-hydroxy ester.  相似文献   

12.
The trunk wood of Clinostemon mahuba contains eight (3R)-2-alkylidene-3-hydroxy-4-methylenebutanolides, seven (3R,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides and seven (3S,4S)-2-alkylidene-3-hydroxy-4-methylbutanolides distinguished by the alkylidene side chains with respect to their E- or Z-geometry, ethenyl, ethynyl or ethyl terminals and lengths (C16 or C18).  相似文献   

13.
14.
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid composed of 22 carbon atoms and six double bonds. Because the first double bond, as counted from the methyl terminus, is at position three, DHA belongs to the so-called -3 group. In recent years, DHA has attracted much attention because of its beneficial effect on human health. At present, fish oil is the major source of DHA, but alternatively it may be produced by use of microorganisms. Marine microorganisms may contain large quantities of DHA and are considered a potential source of this important fatty acid. Some of these organisms can be grown heterotrophically on organic substrates without light. These processes can be well controlled and DHA with constant quality can be produced all year round. This paper reviews recent advances in the biotechnological production of DHA by marine microorganisms.  相似文献   

15.
Sympathetic efferent and peptidergic afferent renal nerves likely influence hypertensive and inflammatory kidney disease. Our recent investigation with confocal microscopy revealed that in the kidney sympathetic nerve endings are colocalized with afferent nerve fibers (Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W, Freisinger W, Veelken R. Am J Physiol Renal Physiol 297: F1427-F1434, 2009; Veelken R, Vogel EM, Hilgers K, Amman K, Hartner A, Sass G, Neuhuber W, Tiegs G. J Am Soc Nephrol 19: 1371-1378, 2008). However, it is not known whether renal afferent nerves are influenced by sympathetic nerve activity. We tested the hypothesis that norepinephrine (NE) influences voltage-gated Ca(2+) channel currents in cultured renal dorsal root ganglion (DRG) neurons, i.e., the first-order neuron of the renal afferent pathway. DRG neurons (T11-L2) retrogradely labeled from the kidney and subsequently cultured, were investigated by whole-cell patch clamp. Voltage-gated calcium channels (VGCC) were investigated by voltage ramps (-100 to +80 mV, 300 ms, every 20 s). NE and appropriate adrenergic receptor antagonists were administered by microperfusion. NE (20 μM) reduced VGCC-mediated currents by 10.4 ± 3.0% (P < 0.01). This reduction was abolished by the α-adrenoreceptor inhibitor phentolamine and the α(2)-adrenoceptor antagonist yohimbine. The β-adrenoreceptor antagonist propranolol and the α(1)-adrenoceptor antagonist prazosin had no effect. The inhibitory effect of NE was abolished when N-type currents were blocked by ω-conotoxin GVIA, but was unaffected by other specific Ca(2+) channel inhibitors (ω-agatoxin IVA; nimodipine). Confocal microscopy revealed sympathetic innervation of DRGs and confirmed colocalization of afferent and efferent fibers within in the kidney. Hence NE released from intrarenal sympathetic nerve endings, or sympathetic fibers within the DRGs, or even circulating catecholamines, may influence the activity of peptidergic afferent nerve fibers through N-type Ca(2+) channels via an α(2)-adrenoceptor-dependent mechanism. However, the exact site and the functional role of this interaction remains to be elucidated.  相似文献   

16.
Chronic alcohol (ethanol) abuse causes neuroinflammation and brain damage that can give rise to alcoholic dementia. Insightfully, Dr. Albert Sun was an early proponent of oxidative stress as a key factor in alcoholism-related brain deterioration. In fact, oxidative stress has proven to be critical to the hippocampal and temporal cortical neurodamage resulting from repetitive “binge” alcohol exposure in adult rat models. Although the underlying mechanisms are uncertain, our immunoelectrophoretic and related assays in binge alcohol experiments in vivo (adult male rats) and in vitro (rat organotypic hippocampal-entorhinal cortical slice cultures) have implicated phospholipase A2 (PLA2)-activated neuroinflammatory pathways, release of pro-oxidative arachidonic acid (20:4 ω6), and elevated oxidative stress adducts (i.e., 4-hydroxynonenal-protein adducts). Also, significantly increased by the binge alcohol treatments was aquaporin-4 (AQP4), a water channel enriched in astrocytes that, when augmented, may trigger brain (esp. cellular) edema and neuroinflammation; of relevance, glial swelling is known to provoke increased PLA2 activities or levels. Concomitant with PLA2 activation, the results have further implicated binge alcohol-elevated poly (ADP-ribose) polymerase-1 (PARP-1), an oxidative stress-responsive DNA repair enzyme linked to parthanatos, a necrotic-like neuronal death process. Importantly, supplementation of the brain slice cultures with docosahexaenoic acid (22:6 ω3) exerted potent suppression of the induced changes in PLA2 isoforms, AQP4, PARP-1 and oxidative stress footprints, and prevention of the binge alcohol neurotoxicity, by as yet unknown mechanisms. These neuroinflammatory findings from our binge alcohol studies and supportive rat binge studies in the literature are reviewed.  相似文献   

17.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J isoforms converting AA to epoxyeicosatrienoic acids (EETs) preferentially epoxidized the ω-3 double bond and thereby produced 17,18-epoxyeicosatetraenoic (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) from EPA and DHA. We found that these ω-3 epoxides are highly active as antiarrhythmic agents, suppressing the Ca2+-induced increased rate of spontaneous beating of neonatal rat cardiomyocytes, at low nanomolar concentrations. CYP4A/4F isoforms ω-hydroxylating AA were less regioselective toward EPA and DHA, catalyzing predominantly ω- and ω minus 1 hydroxylation. Rats given dietary EPA/DHA supplementation exhibited substantial replacement of AA by EPA and DHA in membrane phospholipids in plasma, heart, kidney, liver, lung, and pancreas, with less pronounced changes in the brain. The changes in fatty acids were accompanied by concomitant changes in endogenous CYP metabolite profiles (e.g. altering the EET/EEQ/EDP ratio from 87:0:13 to 27:18:55 in the heart). These results demonstrate that CYP enzymes efficiently convert EPA and DHA to novel epoxy and hydroxy metabolites that could mediate some of the beneficial cardiovascular effects of dietary ω-3 fatty acids.  相似文献   

18.
The fatty acids from Grevillea robusta seed oil triglycerides contain 22.5 % ω-5 monoenes ranging in chain length from C14 to C28. C16 to C26 saturates (18 %), C18 to C24 ω-9 monoenes (55 %), C18 diene (2.3 %) and C18 triene (0.7 %) make up the remainder of the acids.  相似文献   

19.
Applied Microbiology and Biotechnology - Polyunsaturated fatty acids (PUFAs) are essential lipids for cell function, normal growth, and development, serving as key structural components of...  相似文献   

20.
New polymethylene derivatives of nucleic bases containing a -dioxo function at the -position were synthesized by alkylation of uracil, thymine, and cytosine with 1-(7-chloroheptanoyl)cyclohexan-2-one, and their physicochemical properties were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号