首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A barrier to heterologous production of complex polyketides in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common extender substrate for the biosynthesis of complex polyketides by modular polyketide synthases. One biosynthetic route to (2S)-methylmalonyl-CoA involves the sequential actions of two enzymes, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase, which convert succinyl-CoA to (2R)- and then to (2S)-methylmalonyl-CoA. As reported [McKie, N., et al. (1990) Biochem. J. 269, 293-298; Haller, T., et al. (2000) Biochemistry 39, 4622-4629], when genes encoding coenzyme B(12)-dependent methylmalonyl-CoA mutases were expressed in E. coli, the inactive apo-enzyme was produced. However, when cells harboring the mutase genes from Propionibacterium shermanii or E. coli were treated with the B12 precursor hydroxocobalamin, active holo-enzyme was isolated, and (2R)-methylmalonyl-CoA represented approximately 10% of the intracellular CoA pool. When the E. coli BAP1 cell line [Pfeifer, B. A., et al. (2001) Science 291, 1790-1792] harboring plasmids that expressed P. shermanii methylmalonyl-CoA mutase, Streptomyces coelicolor methylmalonyl-CoA epimerase, and the polyketide synthase DEBS (6-deoxyerythronolide B synthase) was fed propionate and hydroxocobalamin, the polyketide 6-deoxyerythronolide B (6-dEB) was produced. Isotopic labeling studies using [(13)C]propionate showed that the starter unit for polyketide synthesis was derived exclusively from exogenous propionate, while the extender units stemmed from methylmalonyl-CoA via the mutase-epimerase pathway. Thus, the introduction of an engineered mutase-epimerase pathway in E. coli enabled the uncoupling of carbon sources used to produce starter and extender units of polyketides.  相似文献   

2.
Cassette replacement of acyltransferase (AT) domains in 6-deoxyerythronolide B synthase (DEBS) with heterologous AT domains with different substrate specificities usually yields the predicted polyketide analogues. As reported here, however, several AT replacements in module 4 of DEBS failed to produce detectable polyketide under standard conditions, suggesting that module 4 is sensitive to perturbation of the protein structure when the AT is replaced. Alignments between different modular polyketide synthase AT domains and the Escherichia coli fatty acid synthase transacylase crystal structure were used to select motifs within the AT domain of module 4 to re-engineer its substrate selectivity and minimize potential alterations to protein folding. Three distinct primary regions of AT4 believed to confer specificity for methylmalonyl-CoA were mutated into the sequence seen in malonyl-CoA-specific domains. Each individual mutation as well as the three in combination resulted in functional DEBSs that produced mixtures of the natural polyketide, 6-deoxyerythronolide B, and the desired novel analogue, 6-desmethyl-6-deoxyerythronolide B. Production of the latter compound indicates that the identified sequence motifs do contribute to AT specificity and that DEBS can process a polyketide chain incorporating a malonate unit at module 4. This is the first example in which the extender unit specificity of a PKS module has been altered by site-specific mutation and provides a useful alternate method for engineering AT specificity in the combinatorial biosynthesis of polyketides.  相似文献   

3.
The megalomicin and erythromycin polyketide synthases (PKSs) produce the same aglycon product, 6-deoxyerythronolide B (6-dEB). Both PKSs were examined in an Escherichia coli strain metabolically engineered to support complex polyketide biosynthesis. Production of 6-dEB in shake flask fermentations was undetectable by mass spectrometry in the strain expressing the megalomicin (Meg) PKS genes, whereas 31 mg/L 6-dEB was produced by the strain with the erythromycin (DEBS) PKS. The genes for each of the three subunits comprising the PKSs were expressed in different combinations from three compatible expression vectors (e.g., DEBS1, DEBS2, and MegA3) to identify two Meg PKS subunits, MegA1 and MegA3, which conferred lower 6-dEB titers than their DEBS counterparts. Comparison of protein expression levels and 6-dEB titers by engineered hybrid DEBS/Meg PKS genes further defined regions within modules 2 and 6 of MegA1 and MegA3, respectively, which limit protein expression and 6-dEB production in E. coli. Meg module 2 + TE (M2 + TE) and a hybrid DEBS M2/Meg M2 + TE protein were engineered and purified for in vitro comparisons with DEBS M2 + TE. The specific activity of the hybrid M2 + TE was approximately 16-fold lower than DEBS M2 + TE and only twice as high as the Meg M2 + TE enzyme in diketide elongation assays. Since the hybrid M2 worked comparably to DEBS M2 in vivo, this suggests that boosting subunit concentration could serve as a useful approach to overcome enzyme deficiencies in heterologous polyketide production.  相似文献   

4.
Chemobiosynthesis (J. R. Jacobsen, C. R. Hutchinson, D. E. Cane, and C. Khosla, Science 277:367-369, 1997) is an important route for the production of polyketide analogues and has been used extensively for the production of analogues of 6-deoxyerythronolide B (6-dEB). Here we describe a new route for chemobiosynthesis using a version of 6-deoxyerythronolide B synthase (DEBS) that lacks the loading module. When the engineered DEBS was expressed in both Escherichia coli and Streptomyces coelicolor and fed a variety of acyl-thioesters, several novel 15-R-6-dEB analogues were produced. The simpler "monoketide" acyl-thioester substrates required for this route of 15-R-6-dEB chemobiosynthesis allow greater flexibility and provide a cost-effective alternative to diketide-thioester feeding to DEBS KS1(o) for the production of 15-R-6-dEB analogues. Moreover, the facile synthesis of the monoketide acyl-thioesters allowed investigation of alternative thioester carriers. Several alternatives to N-acetyl cysteamine were found to work efficiently, and one of these, methyl thioglycolate, was verified as a productive thioester carrier for mono- and diketide feeding in both E. coli and S. coelicolor.  相似文献   

5.
Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit (2S)-methylmalonyl-CoA via three independent pathways. Expression of the Streptomyces coelicolor malonyl/methylmalonyl-CoA ligase (matB) pathway in E. coli together with methylmalonate feeding resulted in the accumulation of intracellular methylmalonyl-CoA to as much as 90% of the acyl-CoA pool. Surprisingly, the methylmalonyl-CoA generated from the matB pathway was not converted into 6dEB. In strains expressing either the S. coelicolor propionyl-CoA carboxylase (PCC) pathway or the Propionibacteria shermanii methylmalonyl-CoA mutase/epimerase pathway, methylmalonyl-CoA accumulated up to 30% of the total acyl-CoA pools, and 6dEB was produced; titers were fivefold higher when strains contained the PCC pathway rather than the mutase pathway. When the PCC and mutase pathways were expressed simultaneously, the PCC pathway predominated, as indicated by greater flux of 13C-propionate into 6dEB through the PCC pathway. To further optimize the E. coli production strain, we improved 6dEB titers by integrating the PCC and mutase pathways into the E. coli chromosome and by expressing the 6-deoxyerythronolide B synthase (DEBS) genes from a stable plasmid system.S. Murli and J. Kennedy contributed equally to this work  相似文献   

6.
A two-vector system was developed for heterologous expression of the three genes comprising the 6-deoxyerythronolide B synthase (DEBS) polyketide gene cluster. Individual DEBS genes and pairwise combinations of two such genes were each cloned downstream of the actinorhodin (actI) promoter in two compatible Streptomyces vectors: the autonomously replicating vector, pKAO127′Kan′, and the integrating vector, pSET152. The resulting plasmids were either simultaneously or sequentially transformed into Streptomyces lividans K4-114. Efficient trans-complementation of modular polyketide synthase subunit proteins occurred when the respective genes were transcribed from the two vectors and resulted in production of the erythromycin precursor 6-deoxyerythronolide B (6-dEB). Journal of Industrial Microbiology & Biotechnology (2000) 24, 46–50. Received 17 March 1999/ Accepted in revised form 15 September 1999  相似文献   

7.
A method was developed for the large-scale bioconversion of novel 6-deoxyerythronolide B (6-dEB) analogs into erythromycin analogs. Erythromycin biosynthesis in Saccharopolyspora erythraea proceeds via the formation of a polyketide aglycone, 6-dEB, which is subsequently glycosylated, hydroxylated and methylated to yield the antibiotic erythromycin A. A modular polyketide synthase (PKS) directs 6-dEB synthesis using a dedicated set of active sites for the condensation of each of seven propionate units. Strategies based on genetic manipulation and precursor feeding are available for the efficient generation of novel 6-dEB analogs using a plasmid-based system in Streptomyces coelicolor. 6-dEB and 13-substituted 6-dEB analogs produced in this manner were fed to S. erythraea mutants which could not produce 6-dEB, yet retained their 6-dEB modification systems, and resulted in the generation of erythromycin A and 13-substituted erythromycin A analogs. Erythromycin B, C and D analogs were observed as intermediates of the process. Dissolved oxygen, temperature, the specific aglycone feed concentration, and pH were found to be important for obtaining a high yield of erythromycin A analogs. Cultivation conditions were identified which resulted in the efficient bioconversion of 6-dEB analogs into erythromycin A analogs, which this process demonstrated at the 100 l scale.  相似文献   

8.
Modular polyketide synthases (PKSs), such as the 6-deoxyerythronolide B synthase (DEBS), are giant multienzymes that biosynthesize a number of clinically important natural products. The modular nature of PKSs suggests the possibility of a combinatorial approach to the synthesis of novel bioactive polyketides, but the efficacy of such a strategy depends critically on gaining fundamental insight into PKS structure and function, most directly through experiments with purified PKS proteins. Several recent investigations into important aspects of the activity of these enzymes have used only partially purified proteins (often 3-4% of total protein), reflecting how difficult it is to purify these multienzymes in amounts adequate for kinetic and structural analysis. We report here the steady-state kinetic analysis of a typical bimodular PKS, 6-deoxyerythronolide B synthase 1-thioesterase (DEBS 1-TE), purified from recombinant Saccharopolyspora erythraea JCB101 by a new, high-yielding procedure consisting of three steps: ammonium sulfate precipitation, hydrophobic interaction chromatography and size-exclusion chromatography. The method provides 13-fold purification with a recovery of 11% of the applied PKS activity. The essentially homogeneous synthase exhibits an intrinsic methylmalonyl-CoA hydrolase activity, which competes with polyketide chain extension. The most reliable value for the kcat for synthesis of (3S,5R)-dihydroxy-(2R,4R)-dimethyl-n-heptanoic acid-delta-lactone is 0.84 min-1, and the apparent Km for (2RS)-methylmalonyl-CoA is 17 microM. This kcat is approximately 10-fold lower than the value reported previously for a differently engineered version of the truncated PKS, DEBS 1+TE. The difference likely reflects the fact that the DEBS 1-TE contains a hybrid acyl carrier protein (ACP) domain in its second module, which lowers its catalytic efficiency.  相似文献   

9.
Lau J  Cane DE  Khosla C 《Biochemistry》2000,39(34):10514-10520
The priming of many modular polyketide synthases is catalyzed by a loading acyltransferase-acyl carrier protein (AT(L)-ACP(L)) didomain which initiates polyketide biosynthesis by transferring a primer unit to the ketosynthase domain of the first module. Because the AT(L) domain influences the choice of the starter unit incorporated into the polyketide backbone, its specificity is of considerable interest. The AT(L)-ACP(L) didomain of the 6-deoxyerythronolide B synthase (DEBS) was functionally expressed in Escherichia coli. Coexpression of the Sfp phosphopantetheinyl transferase from Bacillus subtilis in E. coli leads to efficient posttranslational modification of the ACP(L) domain with a phosphopantetheine moiety. Competition experiments were performed with the holo-protein to determine the relative rates of incorporation of a variety of unnatural substrates in the presence of comparable concentrations of labeled acetyl-CoA. Our results showed that the loading didomain of DEBS can accept a surprisingly broad range of substrates, although it exhibits a preference for unbranched alkyl chain substrates over branched alkyl chain, polar, aromatic, and charged substrates. In particular, its tolerance toward acetyl- and butyryl-CoA is unexpectedly strong. The studies described here present an attractive prototype for the expression, analysis, and engineering of acyltransferase domains in modular polyketide synthases.  相似文献   

10.
A robust high cell-density fed-batch bioprocess was developed for the heterologous production of 6-deoxyerythronolide B (6-dEB), the macrocyclic core of the antibiotic erythromycin, with a recombinant Escherichia coli strain expressing the 6-deoxyerythronolide B synthase (DEBS) from Saccharopolyspora erythraea. Initial evaluation of the E. coli strain in a 5-l bioreactor with the addition of exogenous propionate for polyketide biosynthesis resulted in a maximum cell density of 30 g l(-1) (OD600 approximately 60) and the production of 700 mg l(-1) of 6-dEB. Retention of the two plasmids harboring the heterologous genes was maintained between 90 and 100% even in the absence of antibiotic selection. However, the accumulation of excess ammonia in the culture medium was found to significantly decrease the productivity of the cells. Through optimization of the medium composition and fermentation conditions, the maximum cell density was increased by two-fold, and a final titer of 1.1 g l(-1) of 6-dEB was achieved. This represents an 11-fold improvement compared to the highest reported titer of 100 mg l(-1) with E. coli as the production host.  相似文献   

11.
A process for the production of erythromycin aglycone analogues has been developed by combining classical strain mutagenesis techniques with modern recombinant DNA methods and traditional process improvement strategies. A Streptomyces coelicolor strain expressing the heterologous 6-deoxyerythronolide B (6-dEB) synthase (DEBS) for the production of erythromycin aglycones was subjected to random mutagenesis and selection. Several strains exhibiting 2-fold higher productivities and reaching >3 g/L total macrolide aglycones were developed. These mutagenized strains were cured of the plasmid carrying the DEBS genes and a KS1 degrees mutant DEBS operon was introduced for the production of novel analogues when supplemented with a synthetic diketide precursor. The strains expressing the mutant DEBS were screened for improved 15-methyl-6-dEB production, and the best clone, strain B9, was found to be 50% more productive as compared to the parent host strain used for 15-methyl-6-dEB production. Strain B9 was evaluated in 5-L fermenters to confirm productivity in a scalable process. Although peak titers of 0.85 g/L 15-methyl-6-dEB by strain B9 confirmed improved productivity, it was hypothesized that the low solubility of 15-methyl-6-dEB limited productivity. The solubility of 15-methyl-6-dEB in water was determined to be 0.25-0.40 g/L, although higher titers are possible in fermentation medium. The incorporation of the hydrophobic resin XAD-16HP resulted in both the in situ adsorption of the product and the slow release of the diketide precursor. The resin-containing fermentation achieved 1.3 g/L 15-methyl-6-dEB, 50% higher than the resin-free process. By combining classical mutagenesis, recombinant DNA techniques, and process development, 15-methyl-6-dEB productivity was increased by over 100% in a scalable fermentation process.  相似文献   

12.
Chemobiosynthesis (J. R. Jacobsen, C. R. Hutchinson, D. E. Cane, and C. Khosla, Science 277:367-369, 1997) is an important route for the production of polyketide analogues and has been used extensively for the production of analogues of 6-deoxyerythronolide B (6-dEB). Here we describe a new route for chemobiosynthesis using a version of 6-deoxyerythronolide B synthase (DEBS) that lacks the loading module. When the engineered DEBS was expressed in both Escherichia coli and Streptomyces coelicolor and fed a variety of acyl-thioesters, several novel 15-R-6-dEB analogues were produced. The simpler “monoketide” acyl-thioester substrates required for this route of 15-R-6-dEB chemobiosynthesis allow greater flexibility and provide a cost-effective alternative to diketide-thioester feeding to DEBS KS1o for the production of 15-R-6-dEB analogues. Moreover, the facile synthesis of the monoketide acyl-thioesters allowed investigation of alternative thioester carriers. Several alternatives to N-acetyl cysteamine were found to work efficiently, and one of these, methyl thioglycolate, was verified as a productive thioester carrier for mono- and diketide feeding in both E. coli and S. coelicolor.  相似文献   

13.
聚酮是一大类具有重要生物活性的天然产物,其生物合成途径复杂多样。利用异源宿主合成聚酮化合物要比使用天然生产菌有很多优点。异源宿主的选择是异源生物合成聚酮的关键。这种宿主必须能够大量表达大分子聚酮合成酶(300 kDa或更大)且能够大规模的转译后修饰这些蛋白;还要能够形成大量的像丙二酰CoA、甲基丙二酰CoA等细胞内起始单元。随着各种技术的不断进步,异源宿主很可能成为大规模生产聚酮化合物的一个强有力平台。本文对聚酮合成酶,异源生产聚酮的优点、条件和应用都有所阐述。  相似文献   

14.
Chromosomal engineering was used to localize the deoxyerythronolide B synthase (DEBS) genes and propionyl-CoA carboxylase (PCC) genes to the BAP1 Escherichia coli chromosome creating the new strain YW9. YW9 then featured a plasmid-free heterologous pathway for the production of the polyketide product 6-deoxyerythronolide B (6dEB, a precursor to the antibiotic erythromycin) highlighted by the successful chromosomal integration of five genes total and three DEBS genes each approximately 10 kb in length. The new strain was tested for small-scale 6dEB biosynthesis and compared to 6dEB production from plasmid-derived gene expression at 22, 30, and 37 degrees C. YW9 produced 6dEB at each temperature tested; whereas, the current plasmid-based system could only produce 6dEB at 22 and 30 degrees C. As determined by MS analysis, average production levels for YW9 were 0.47 (22 degrees C), 0.52 (30 degrees C), and 0.11 (37 degrees C)mg/L.  相似文献   

15.
Precursor-directed biosynthesis has been shown to be a powerful tool for the production of polyketide analogues that would be difficult or cost prohibitive to produce from medicinal chemistry efforts alone. It has been most extensively demonstrated using a KS1 null mutation (KS10) to block the first round of condensation in the biosynthesis of the erythromycin polyketide synthase (DEBS) for the production of analogues of its aglycone, 6-deoxyerythronolide B (6-dEB). Here we show that removing the DEBS loading domain and first module (mod1Δ), rather than using the KS10 system, can lead to an increase in the utilization of some chemical precursors and production of 6-dEB analogues (R-6dEB) in both Streptomyces coelicolor and Saccharopolyspora erythraea. While the difference in utilization of the precursor was diketide specific, in strains fed (2R*, 3S*)-5-fluoro-3-hydroxy-2-methylpentanoate N-propionylcysteamine thioester, twofold increases in both utilization of the diketide and 15-fluoro-6dEB (15F-6dEB) production were observed in S. coelicolor, and S. erythraea exhibited a tenfold increase in production of 15-fluoro-erythromycin when utilizing the mod1Δ rather than the KS10 system.  相似文献   

16.
A fermentation process employing precursor-directed biosynthesis is being developed for the manufacture of 6-deoxyerythronolide B (6-dEB) analogues. Through a plasmid-based system in Streptomyces coelicolor, 6-dEB synthesis is catalyzed by 6-dEB synthase (DEBS). 6-dEB synthesis is abolished by inactivation of the ketosynthase (KS) 1 domain of DEBS but can be restored by providing synthetic activated diketides. Because of its inherent catalytic flexibility, the KS1-deficient DEBS is capable of utilizing unnatural diketides to form various 13-substituted 6-dEBs. Here we characterize process variables associated with diketide feeding in shake-flask experiments. 13-R-6-dEB production was found to depend strongly on diketide feed concentrations, on the growth phase of cultures at feeding time, and on the R-group present in the diketide moiety. In all cases a major portion of the fed diketides was degraded by the cells.  相似文献   

17.
The 6-deoxyerythronolide B synthase (DEBS) is a prototypical assembly line polyketide synthase produced by the actinomycete Saccharopolyspora erythraea that synthesizes the macrocyclic core of the antibiotic erythromycin 6-deoxyerythronolide B. The megasynthase is a 2-MDa trimeric complex composed of three unique homodimers assembled from the gene products DEBS1, DEBS2, and DEBS3, which are housed within the erythromycin biosynthetic gene cluster. Each homodimer contains two clusters of catalytically independent enzymatic domains, each referred to as a module, which catalyzes one round of polyketide chain extension and modification. Modules are named sequentially to indicate the order in which they are utilized during synthesis of 6-deoxyerythronolide B. We report small-angle X-ray scattering (SAXS) analyses of a whole module and a bimodule from DEBS, as well as a set of domains for which high-resolution structures are available. In all cases, the solution state was probed under previously established conditions ensuring that each protein is catalytically active. SAXS data are consistent with atomic-resolution structures of DEBS fragments. Therefore, we used the available high-resolution structures of DEBS domains to model the architectures of the larger protein assemblies using rigid-body refinement. Our data support a model in which the third module of DEBS forms a disc-shaped structure capable of caging the acyl carrier protein domain proximal to each active site. The molecular envelope of DEBS3 is a thin elongated ellipsoid, and the results of rigid-body modeling suggest that modules 5 and 6 stack collinearly along the 2-fold axis of symmetry.  相似文献   

18.
Lessons from the rifamycin biosynthetic gene cluster.   总被引:3,自引:0,他引:3  
There is currently intense interest in unravelling the modus operandi of type I modular polyketide synthases in order to lay the ground work for their use in the combinatorial biosynthesis of new bioactive molecules. Much of our knowledge is derived from studies on 6-deoxyerythronolide B (DEBS), the enzyme assembling the polyketide backbone of erythromycin. Work on the rifamycin polyketide synthase has revealed a number of features that differ from those seen with DEBS.  相似文献   

19.
In the last two decades, the production of complex polyketides such as erythromycin and its precursor 6-deoxyerythronolide B (6-dEB) was demonstrated feasible in Escherichia coli. Although the heterologous production of polyketide skeleton 6-dEB has reached 210 mg l−1 in E. coli, the yield of its post-modification products erythromycins remains to be improved. Cytochrome P450EryF catalyses the C6 hydroxylation of 6-dEB to form erythronolide B (EB), which is the initial rate-limiting modification in a multi-step pathway to convert 6-dEB into erythromycin. Here, we engineered hydroxylase EryF to improve the production of heterologous polyketide EB in E. coli. By comparative analysis of various versions of P450EryFs, we confirmed the optimal SaEryF for the biosynthesis of EB. Further mutation of SaEryF based on the crystal structure of SaEryF and homology modelling of AcEryF and AeEryF afforded the enhancement of EB production. The designed mutant of SaEryF, I379V, achieved the yield of 131 mg l−1 EB, which was fourfold to that produced by wild-type SaEryF. Moreover, the combined mutagenesis of multiple residues led to further boost the EB concentration by another 41%, which laid the foundation for efficient heterologous biosynthesis of erythromycin or other complex polyketides.  相似文献   

20.
A putative catalytic triad consisting of tyrosine, serine, and lysine residues was identified in the ketoreductase (KR) domains of modular polyketide synthases (PKSs) based on homology modeling to the short chain dehydrogenase/reductase (SDR) superfamily of enzymes. This was tested by constructing point mutations for each of these three amino acid residues in the KR domain of module 6 of the 6-deoxyerythronolide B synthase (DEBS) and determining the effect on ketoreduction. Experiments conducted in vitro with the truncated DEBS Module 6+TE (M6+TE) enzyme purified from Escherichia coli indicated that any of three mutations, Tyr --> Phe, Ser --> Ala, and Lys --> Glu, abolish KR activity in formation of the triketide lactone product from a diketide substrate. The same mutations were also introduced in module 6 of the full DEBS gene set and expressed in Streptomyces lividans for in vivo analysis. In this case, the Tyr --> Phe mutation appeared to completely eliminate KR6 activity, leading to the 3-keto derivative of 6-deoxyerythronolide B, whereas the other two mutations, Ser --> Ala and Lys --> Glu, result in a mixture of both reduced and unreduced compounds at the C-3 position. The results support a model analogous to SDRs in which the conserved tyrosine serves as a proton donating catalytic residue. In contrast to deletion of the entire KR6 domain of DEBS, which causes a loss in substrate specificity of the adjacent acyltransferase (AT) domain in module 6, these mutations do not affect the AT6 specificity and offer a potentially superior approach to KR inactivation for engineered biosynthesis of novel polyketides. The homology modeling studies also led to identification of amino acid residues predictive of the stereochemical nature of KR domains. Finally, a method is described for the rapid purification of engineered PKS modules that consists of a biotin recognition sequence C-terminal to the thioesterase domain and adsorption of the biotinylated module from crude extracts to immobilized streptavidin. Immobilized M6+TE obtained by this method was over 95% pure and as catalytically effective as M6+TE in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号