首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Limited proteolysis in combination with liquid chromatography-ion trap mass spectrometry (LC-MS) was used to analyze engineered or natural proteins derived from a type I modular polyketide synthase (PKS), the 6-deoxyerythronolide B synthase (DEBS), and comprising either the first two extension modules linked to the chain-terminating thioesterase (TE) (DEBS1-TE); or the last two extension modules (DEBS3) or the first extension module linked to TE (diketide synthase, DKS). Functional domains were released by controlled proteolysis, and the exact boundaries of released domains were obtained through mass spectrometry and N-terminal sequencing analysis. The acyltransferase-acyl carrier protein required for chain initiation (AT(L)-ACP(L)), was released as a didomain from both DEBS1-TE and DKS, as well as the off-loading TE as a didomain with the adjacent ACP. Mass spectrometry was used successfully to monitor in detail both the release of individual domains, and the patterns of acylation of both intact and digested DKS when either propionyl-CoA or n-butyryl-CoA were used as initiation substrates. In particular, both loading domains and the ketosynthase domain of the first extension module (KS1) were directly observed to be simultaneously primed. The widely available and simple MS methodology used here offers a convenient approach to the proteolytic mapping of PKS multienzymes and to the direct monitoring of enzyme-bound intermediates.  相似文献   

2.
Liou GF  Lau J  Cane DE  Khosla C 《Biochemistry》2003,42(1):200-207
The acyltransferase (AT) domains of modular polyketide synthases (PKSs) are the primary determinants of building block specificity in polyketide biosynthesis and are therefore attractive targets for protein engineering. Thus far, investigations into the fundamental biochemical properties of AT domains have been hampered by the inability to produce these enzymes as self-standing polypeptides. Here we describe an alternative, generally applicable strategy for overexpression and analysis of AT domains from modular PKSs as truncated didomain proteins (approximately 60 kDa). Recently, we reported the expression and reconstitution of the loading didomain of 6-deoxyerythronolide B synthase (Lau, J., Cane, D. E., and Khosla, C. (2000) Biochemistry 39, 10514-20). By replacing the AT domain of this protein with a methylmalonyl-CoA specific AT domain from module 6 of the 6-deoxyerythronolide B synthase, or alternatively a malonyl-CoA specific AT domain from module 2 of the rapamycin synthase, each of these extender unit AT domains could be overproduced and purified to homogeneity. Using acyl-CoA substrates as acyl group donors and N-acetylcysteamine as the thiol acceptor, we devised a steady-state kinetic assay to probe the properties of these three didomain proteins and selected mutants. Propionyl-CoA was the preferred substrate of the loading didomain, although acetyl- and butyryl-CoA were also accepted with approximately 40-fold-lower specificity. In contrast to the relatively relaxed specificity of the loading AT domain, the methylmalonyl- and malonyl-specific AT domains had high specificity (>1000-fold) toward their natural substrates. The acyl transfer reaction was inhibited by coenzyme A (CoASH) with both a competitive and a noncompetitive component. Use of an exogenous holo-acyl carrier protein (ACP) as an acceptor thiol did not increase the rate of acyl transfer relative to the reaction involving N-acetylcysteamine, suggesting that either the on-rate of the acyl group is rate-limiting or that the apo-ACP component of the didomain protein precludes effective docking of a second ACP onto the AT active site. Mutation of Trp-222 in the loading AT domain to an Arg residue that is universally conserved in all extender unit AT domains failed to enable the loading AT domain to accept methylmalonyl-CoA as an alternative substrate. In contrast, mutation of the equivalent Arg residue in an extender AT domain resulted in a protein with no activity. Together, these results provide a foundation for future structural and mechanistic investigations into the properties of AT domains of modular PKSs.  相似文献   

3.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   

4.
Cassette replacement of acyltransferase (AT) domains in 6-deoxyerythronolide B synthase (DEBS) with heterologous AT domains with different substrate specificities usually yields the predicted polyketide analogues. As reported here, however, several AT replacements in module 4 of DEBS failed to produce detectable polyketide under standard conditions, suggesting that module 4 is sensitive to perturbation of the protein structure when the AT is replaced. Alignments between different modular polyketide synthase AT domains and the Escherichia coli fatty acid synthase transacylase crystal structure were used to select motifs within the AT domain of module 4 to re-engineer its substrate selectivity and minimize potential alterations to protein folding. Three distinct primary regions of AT4 believed to confer specificity for methylmalonyl-CoA were mutated into the sequence seen in malonyl-CoA-specific domains. Each individual mutation as well as the three in combination resulted in functional DEBSs that produced mixtures of the natural polyketide, 6-deoxyerythronolide B, and the desired novel analogue, 6-desmethyl-6-deoxyerythronolide B. Production of the latter compound indicates that the identified sequence motifs do contribute to AT specificity and that DEBS can process a polyketide chain incorporating a malonate unit at module 4. This is the first example in which the extender unit specificity of a PKS module has been altered by site-specific mutation and provides a useful alternate method for engineering AT specificity in the combinatorial biosynthesis of polyketides.  相似文献   

5.
Chain initiation on many modular polyketide synthases is mediated by acyl transfer from the CoA ester of a dicarboxylic acid, followed by decarboxylation in situ by KSQ, a ketosynthase-like decarboxylase domain. Consistent with this, the acyltransferase (AT) domains of all KSQ-containing loading modules are shown here to contain a key arginine residue at their active site. Site-specific replacement of this arginine residue in the oleandomycin (ole) loading AT domain effectively abolished AT activity, consistent with its importance for catalysis. Substitution of the ole PKS loading module, or of the tylosin PKS loading module, for the erythromycin (ery) loading module gave polyketide products almost wholly either acetate derived or propionate derived, respectively, instead of the mixture found normally. An authentic extension module AT domain, rap AT2 from the rapamycin PKS, functioned appropriately when engineered in the place of the ole loading AT domain, and gave rise to substantial amounts of C13-methylerythromycins, as predicted. The role of direct acylation of the ketosynthase domain of ex-tension module 1 in chain initiation was confirmed by demonstrating that a mutant of the triketide synthase DEBS1-TE, in which the 4'-phosphopante-theine attachment site for starter acyl groups was specifically removed, produced triketide lactone pro-ducts in detectable amounts.  相似文献   

6.
Jiralerspong S  Rangaswamy V  Bender CL  Parry RJ 《Gene》2001,270(1-2):191-200
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant pathogen Pseudomonas syringae. The CFA polyketide synthase (PKS) consists of two open reading frames (ORFs) that encode type I multifunctional proteins and several ORFs that encode monofunctional proteins. Sequence comparisons of the modular portions of the CFA PKS with other prokaryotic, modular PKSs elucidated the boundaries of the domains that are involved in the individual stages of polyketide assembly. The two β-ketoacyl:acyl carrier protein synthase (KS) domains in the modular portion of the CFA PKS exhibit a high degree of similarity to each other (53%), but are even more similar to the KS domains of DEBS, RAPS, and RIF. Cfa6 possesses two acyltransferases- AT0, which is associated with a loading domain, and AT1, which uses ethylmalonyl-CoA (eMCoA) as a substrate for chain extension. Cfa7 contains an AT that uses malonyl-CoA as a substrate for chain extension. The Cfa6 AT0 shows 35 and 32% similarity to the DEBS1 and NidA1 AT0s, respectively, and 32 and 36% similarity to the Cfa6 and Cfa7 AT1s. Sequence motifs have previously been identified that correlate with AT substrates. The motifs in Cfa6 AT1 were found to correlate reasonably well with those predicted for methylmalonyl-CoA (mMCoA) ATs. The motifs in the AT of Cfa7 correlated more poorly with those predicted for MCoA ATs. Three ACP domains occur in the modular proteins of the COR PKS. The loading domain-associated ACP0 showed 38% similarity to the loading domain ACP0s of DEBS1 and NidA1 and 32–36% similarity to the two module-associated ACPs of the COR PKS. It exhibited a higher degree of similarity to the module-associated ACPs of RAPS. The two module-associated ACPs show 39% similarity to each other, but appear more closely related to module-associated ACP domains in RAPS and RIFS. Furthermore, the DH and KR domains of Cfa6 and Cfa7 show greater similarity to DH and KR domains in RAPS and RIFS than to each other. The CFA PKS includes a thioesterase domain (TE I) that resides at the C-terminus of Cfa7 and a second thioesterase, which exists as a separate ORF (Cfa9, a TE II). Analysis of a Cfa7 thioesterase mutant demonstrated that the TE domain is required for the production of CFA. The co-existence of TE domains within modular PKSs along with physically separated, monofunctional TEs (TE IIs) has been reported for a number of modular polyketide and non-ribosomal peptide synthases (NRPS). An analysis of the two types of thioesterases using Clustal X yielded a dendrogram showing that TE IIs from PKSs and NRPSs are more closely related to each other than to domain TEs from either PKSs or NRPSs. Furthermore, the dendrogram indicates that both types of TE IIs are more closely related to TE domains associated with PKSs than to TE domains in NRPSs. Finally, the overall % G+C content and the % G+C content at the third codon for all of the PKS genes in the COR cluster suggest that these genes may have been recruited from a gram-positive bacterium.  相似文献   

7.
Yuzawa S  Kapur S  Cane DE  Khosla C 《Biochemistry》2012,51(18):3708-3710
The role of interdomain linkers in modular polyketide synthases is poorly understood. Analysis of the 6-deoxyerythronolide B synthase (DEBS) has yielded a model in which chain elongation is governed by interactions between the acyl carrier protein domain and the ketosynthase domain plus an adjacent linker. Alanine scanning mutagenesis of the conserved residues of this linker in DEBS module 3 led to the identification of the R513A mutant with a markedly reduced rate of chain elongation. Limited proteolysis supported a structural role for this Arg. Our findings highlight the importance of domain-linker interactions in assembly line polyketide biosynthesis.  相似文献   

8.
Sequence comparisons of multiple acyltransferase (AT) domains from modular polyketide synthases (PKSs) have highlighted a correlation between a short sequence motif and the nature of the extender unit selected. When this motif was specifically altered in the bimodular model PKS DEBS1-TE of Saccharopolyspora erythraea, the products included triketide lactones in which acetate extension units had been incorporated instead of propionate units at the predicted positions. We also describe a cassette system for convenient construction of hybrid modular PKSs based on the tylosin PKS in Streptomyces fradiae and demonstrate its use in domain and module swaps.  相似文献   

9.
Ma SM  Tang Y 《The FEBS journal》2007,274(11):2854-2864
The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.  相似文献   

10.
Type I polyketide synthases (PKSs) are giant multidomain proteins that synthesize many therapeutics and other natural products. The synthesis proceeds by a thiotemplate mechanism whereby intermediates are covalently attached to the PKS. The release of the final polyketide is catalyzed by the terminal thioesterase (TE) domain through hydrolysis, transesterification, or macrocyclization. The PKS 6-deoxyerythronolide B synthase (DEBS) produces the 14-membered macrolide core of the clinically important antibiotic erythromycin. The TE domain of DEBS (DEBS TE) has well-established, empirically-defined specificities for hydrolysis or macrocyclization of native and modified substrates. We present efforts towards understanding the structural basis for the specificity of the thioesterase reaction in DEBS TE using a set of novel diphenyl alkylphosphonates, which mimic substrates that are specifically cyclized or hydrolyzed by DEBS TE. We have determined structures of a new construct of DEBS TE alone at 1.7 Å, and DEBS TE bound with a simple allylphosphonate at 2.1 Å resolution. Other, more complex diphenyl alkylphosphonates inhibit DEBS TE, but we were unable to visualize these faithful cyclization analogs in complex with DEBS TE. This work represents a first step towards using DEBS TE complexed with sophisticated substrate analogs to decipher the specificity determinants in this important reaction.  相似文献   

11.
Lessons from the rifamycin biosynthetic gene cluster.   总被引:3,自引:0,他引:3  
There is currently intense interest in unravelling the modus operandi of type I modular polyketide synthases in order to lay the ground work for their use in the combinatorial biosynthesis of new bioactive molecules. Much of our knowledge is derived from studies on 6-deoxyerythronolide B (DEBS), the enzyme assembling the polyketide backbone of erythromycin. Work on the rifamycin polyketide synthase has revealed a number of features that differ from those seen with DEBS.  相似文献   

12.
The megalomicin and erythromycin polyketide synthases (PKSs) produce the same aglycon product, 6-deoxyerythronolide B (6-dEB). Both PKSs were examined in an Escherichia coli strain metabolically engineered to support complex polyketide biosynthesis. Production of 6-dEB in shake flask fermentations was undetectable by mass spectrometry in the strain expressing the megalomicin (Meg) PKS genes, whereas 31 mg/L 6-dEB was produced by the strain with the erythromycin (DEBS) PKS. The genes for each of the three subunits comprising the PKSs were expressed in different combinations from three compatible expression vectors (e.g., DEBS1, DEBS2, and MegA3) to identify two Meg PKS subunits, MegA1 and MegA3, which conferred lower 6-dEB titers than their DEBS counterparts. Comparison of protein expression levels and 6-dEB titers by engineered hybrid DEBS/Meg PKS genes further defined regions within modules 2 and 6 of MegA1 and MegA3, respectively, which limit protein expression and 6-dEB production in E. coli. Meg module 2 + TE (M2 + TE) and a hybrid DEBS M2/Meg M2 + TE protein were engineered and purified for in vitro comparisons with DEBS M2 + TE. The specific activity of the hybrid M2 + TE was approximately 16-fold lower than DEBS M2 + TE and only twice as high as the Meg M2 + TE enzyme in diketide elongation assays. Since the hybrid M2 worked comparably to DEBS M2 in vivo, this suggests that boosting subunit concentration could serve as a useful approach to overcome enzyme deficiencies in heterologous polyketide production.  相似文献   

13.
A putative catalytic triad consisting of tyrosine, serine, and lysine residues was identified in the ketoreductase (KR) domains of modular polyketide synthases (PKSs) based on homology modeling to the short chain dehydrogenase/reductase (SDR) superfamily of enzymes. This was tested by constructing point mutations for each of these three amino acid residues in the KR domain of module 6 of the 6-deoxyerythronolide B synthase (DEBS) and determining the effect on ketoreduction. Experiments conducted in vitro with the truncated DEBS Module 6+TE (M6+TE) enzyme purified from Escherichia coli indicated that any of three mutations, Tyr --> Phe, Ser --> Ala, and Lys --> Glu, abolish KR activity in formation of the triketide lactone product from a diketide substrate. The same mutations were also introduced in module 6 of the full DEBS gene set and expressed in Streptomyces lividans for in vivo analysis. In this case, the Tyr --> Phe mutation appeared to completely eliminate KR6 activity, leading to the 3-keto derivative of 6-deoxyerythronolide B, whereas the other two mutations, Ser --> Ala and Lys --> Glu, result in a mixture of both reduced and unreduced compounds at the C-3 position. The results support a model analogous to SDRs in which the conserved tyrosine serves as a proton donating catalytic residue. In contrast to deletion of the entire KR6 domain of DEBS, which causes a loss in substrate specificity of the adjacent acyltransferase (AT) domain in module 6, these mutations do not affect the AT6 specificity and offer a potentially superior approach to KR inactivation for engineered biosynthesis of novel polyketides. The homology modeling studies also led to identification of amino acid residues predictive of the stereochemical nature of KR domains. Finally, a method is described for the rapid purification of engineered PKS modules that consists of a biotin recognition sequence C-terminal to the thioesterase domain and adsorption of the biotinylated module from crude extracts to immobilized streptavidin. Immobilized M6+TE obtained by this method was over 95% pure and as catalytically effective as M6+TE in solution.  相似文献   

14.
A barrier to heterologous production of complex polyketides in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common extender substrate for the biosynthesis of complex polyketides by modular polyketide synthases. One biosynthetic route to (2S)-methylmalonyl-CoA involves the sequential actions of two enzymes, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase, which convert succinyl-CoA to (2R)- and then to (2S)-methylmalonyl-CoA. As reported [McKie, N., et al. (1990) Biochem. J. 269, 293-298; Haller, T., et al. (2000) Biochemistry 39, 4622-4629], when genes encoding coenzyme B(12)-dependent methylmalonyl-CoA mutases were expressed in E. coli, the inactive apo-enzyme was produced. However, when cells harboring the mutase genes from Propionibacterium shermanii or E. coli were treated with the B12 precursor hydroxocobalamin, active holo-enzyme was isolated, and (2R)-methylmalonyl-CoA represented approximately 10% of the intracellular CoA pool. When the E. coli BAP1 cell line [Pfeifer, B. A., et al. (2001) Science 291, 1790-1792] harboring plasmids that expressed P. shermanii methylmalonyl-CoA mutase, Streptomyces coelicolor methylmalonyl-CoA epimerase, and the polyketide synthase DEBS (6-deoxyerythronolide B synthase) was fed propionate and hydroxocobalamin, the polyketide 6-deoxyerythronolide B (6-dEB) was produced. Isotopic labeling studies using [(13)C]propionate showed that the starter unit for polyketide synthesis was derived exclusively from exogenous propionate, while the extender units stemmed from methylmalonyl-CoA via the mutase-epimerase pathway. Thus, the introduction of an engineered mutase-epimerase pathway in E. coli enabled the uncoupling of carbon sources used to produce starter and extender units of polyketides.  相似文献   

15.
Modular polyketide synthases (PKSs), such as the 6-deoxyerythronolide B synthase (DEBS), are giant multienzymes that biosynthesize a number of clinically important natural products. The modular nature of PKSs suggests the possibility of a combinatorial approach to the synthesis of novel bioactive polyketides, but the efficacy of such a strategy depends critically on gaining fundamental insight into PKS structure and function, most directly through experiments with purified PKS proteins. Several recent investigations into important aspects of the activity of these enzymes have used only partially purified proteins (often 3-4% of total protein), reflecting how difficult it is to purify these multienzymes in amounts adequate for kinetic and structural analysis. We report here the steady-state kinetic analysis of a typical bimodular PKS, 6-deoxyerythronolide B synthase 1-thioesterase (DEBS 1-TE), purified from recombinant Saccharopolyspora erythraea JCB101 by a new, high-yielding procedure consisting of three steps: ammonium sulfate precipitation, hydrophobic interaction chromatography and size-exclusion chromatography. The method provides 13-fold purification with a recovery of 11% of the applied PKS activity. The essentially homogeneous synthase exhibits an intrinsic methylmalonyl-CoA hydrolase activity, which competes with polyketide chain extension. The most reliable value for the kcat for synthesis of (3S,5R)-dihydroxy-(2R,4R)-dimethyl-n-heptanoic acid-delta-lactone is 0.84 min-1, and the apparent Km for (2RS)-methylmalonyl-CoA is 17 microM. This kcat is approximately 10-fold lower than the value reported previously for a differently engineered version of the truncated PKS, DEBS 1+TE. The difference likely reflects the fact that the DEBS 1-TE contains a hybrid acyl carrier protein (ACP) domain in its second module, which lowers its catalytic efficiency.  相似文献   

16.
Precursor-directed polyketide biosynthesis was demonstrated in the heterologous host Escherichia coli. Several diketide and triketide substrates were fed to a recombinant E. coli strain containing a variant form of deoxyerythronolide B synthase (DEBS) from which the first elongation module was deleted resulting in successful macrolactone formation from the diketide, but not the triketide, substrates.  相似文献   

17.
Kennedy J  Murli S  Kealey JT 《Biochemistry》2003,42(48):14342-14348
The erythromycin precursor polyketide 6-deoxyerythronolide B (6-dEB) is produced from one propionyl-CoA starter unit and six (2S)-methylmalonyl-CoA extender units. In vitro studies have previously demonstrated that the loading module of 6-deoxyerythronolide B synthase (DEBS) exhibits relaxed substrate specificity and is able to accept butyryl-CoA, leading to the production of polyketides with butyrate starter units. We have shown that we can produce butyryl-CoA at levels of up to 50% of the total CoA pool in Escherichia coli cells that overexpress the acetoacetyl-CoA:acetyl-CoA transferase, AtoAD (EC 2.8.3.8), in media supplemented with butyrate. The DEBS polyketide synthase (PKS) used butyryl-CoA and methylmalonyl-CoA supplied in vivo by the AtoAD and methylmalonyl-CoA mutase pathways, respectively, to produce 15-methyl-6-dEB. Priming DEBS with endogenous butyryl-CoA affords an alternative and more direct route to 15-Me-6-dEB than that provided by the chemobiosynthesis method [Jacobsen, J. R., et al. (1997) Science 277, 367-369], which relies on priming a mutant DEBS with an exogenously fed diketide thioester. The approach described here demonstrates the utility of metabolic engineering in E. coli to introduce precursor pathways for the production of novel polyketides.  相似文献   

18.
Chemobiosynthesis (J. R. Jacobsen, C. R. Hutchinson, D. E. Cane, and C. Khosla, Science 277:367-369, 1997) is an important route for the production of polyketide analogues and has been used extensively for the production of analogues of 6-deoxyerythronolide B (6-dEB). Here we describe a new route for chemobiosynthesis using a version of 6-deoxyerythronolide B synthase (DEBS) that lacks the loading module. When the engineered DEBS was expressed in both Escherichia coli and Streptomyces coelicolor and fed a variety of acyl-thioesters, several novel 15-R-6-dEB analogues were produced. The simpler "monoketide" acyl-thioester substrates required for this route of 15-R-6-dEB chemobiosynthesis allow greater flexibility and provide a cost-effective alternative to diketide-thioester feeding to DEBS KS1(o) for the production of 15-R-6-dEB analogues. Moreover, the facile synthesis of the monoketide acyl-thioesters allowed investigation of alternative thioester carriers. Several alternatives to N-acetyl cysteamine were found to work efficiently, and one of these, methyl thioglycolate, was verified as a productive thioester carrier for mono- and diketide feeding in both E. coli and S. coelicolor.  相似文献   

19.
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 ?-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ~600-?(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.  相似文献   

20.
Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain-domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain-domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14-94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 +/- 0.09 Angstrom for the backbone atoms (1.21 +/- 0.13 Angstrom for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 +/- 0.10 Angstrom (0.99 +/- 0.11 Angstrom for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein-protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号