首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J Y Tso  X H Sun  T H Kao  K S Reece    R Wu 《Nucleic acids research》1985,13(7):2485-2502
Full length cDNAs encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from rat and man have been isolated and sequenced. Many GAPDH gene-related sequences have been found in both genomes based on genomic blot hybridization analysis. Only one functional gene product is known. Results from genomic library screenings suggest that there are 300-400 copies of these sequences in the rat genome and approximately 100 in the human genome. Some of these related sequences have been shown to be processed pseudogenes. We have isolated several rat cDNA clones corresponding to these pseudogenes indicating that some pseudogenes are transcribed. Rat and human cDNAs are 89% homologous in the coding region, and 76% homologous in the first 100 base pairs of the 3'-noncoding region. Comparison of these two cDNA sequences with those of the chicken, Drosophila and yeast genes allows the analysis of the evolution of the GAPDH genes in detail.  相似文献   

2.
3.
We report here results which indicate (i) that the nuclear genomes of angiosperms is characterized by a compositional compartmentalization and an isochore structure; and (ii) that the nuclear genomes of some Gramineae exhibit strikingly different compositional patterns compared to those of many dicots. Indeed, the compositional distribution of nuclear DNA molecules (in the 50-100 Kb size range) from three dicots (pea, sunflower and tobacco) and three monocots (maize, rice and wheat) were found to be centered around lower (41%) and higher (45% for rice, 48% for maize and wheat) GC levels, respectively (and to trail towards even higher GC values in maize and wheat). Experiments on gene localization in density gradient fractions showed a remarkable compositional homogeneity in vast (greater than 100-200 Kb) regions surrounding the genes. On the other hand, the compositional distribution of coding sequences (GenBank and literature data) from dicots (several orders) was found to be narrow, symmetrical and centered around 46% GC, that from monocots (essentially barley, maize and wheat) to be broad, asymmetrical and characterized by an upward trend towards high GC values, with the majority of sequences between 60 and 70% GC. Introns exhibited a similar compositional distribution, but lower GC levels, compared to exons from the same genes.  相似文献   

4.
5.
The phylogenetic position of gnetophytes has long been controversial. We sequenced parts of the genes coding for the largest subunit of nuclear RNA polymerase I, II, and III and combined these sequences with those of four chloroplast genes, two mitochondrial genes, and 18S rRNA genes to address this issue. Both maximum likelihood and maximum parsimony analyses of the sites not affected by high substitution levels strongly support a phylogeny where gymnosperms and angiosperms are monophyletic, where cycads are at the base of gymnosperm tree and are followed by ginkgos, and where gnetophytes are grouped within conifers as the sister group of pines. The evolution of several morphological and molecular characters of gnetophytes and conifers will therefore need to be reinterpreted.  相似文献   

6.
7.
M C Alevy  M J Tsai  B W O'Malley 《Biochemistry》1984,23(10):2309-2314
We have cloned a 36-kilobase segment of chicken DNA containing the gene coding for glyceraldehyde-3-phosphate dehydrogenase [GAPDH (EC 1.2.1.12)], a glycolytic enzyme which is expressed constitutively in all cell types. Using defined segments of this cloned DNA as probes, we have determined the DNase I sensitive domain of the GAPDH natural gene in the hen oviduct. When nuclei isolated from hen oviduct were treated with DNase I under conditions known to preferentially degrade actively transcribed genes (i.e., 15-20% of the DNA rendered perchloric acid soluble), a region of approximately 12 kilobase(s) (kb) containing the GAPDH coding sequences and flanking DNA was found to be highly susceptible to digestion by DNase I. Approximately 4 kb downstream from the end of the coding sequences, there was an abrupt transition from the DNase I sensitive or "open" configuration to the resistant or "closed" configuration. The chromatin then remained in a closed conformation for at least 10 kb further downstream. On the 5' side of the gene, the transition from a sensitive to a resistant configuration was located about 4 kb upstream from the gene. In addition, we have localized two repeated sequences in the area of DNA that was cloned. One of these is of the CR1 family of middle repetitive elements. It is located about 18 kb 3' to the gene and as such lies well outside of the DNase I sensitive region which encompasses GAPDH. The other repetitive element is of an uncharacterized family. It is located upstream from the gene and appears to be within a region of transition from the DNase I sensitive to resistant states.  相似文献   

8.
9.
Summary The nuclei of plant cells harbor genes for two types of glyceraldehyde-3-phosphate dehydrogenases (GAPDH) displaying a sequence divergence corresponding to the prokaryote/eukaryote separation. This strongly supports the endosymbiotic theory of chloroplast evolution and in particular the gene transfer hypothesis suggesting that the gene for the chloroplast enzyme, initially located in the genome of the endosymbiotic chloroplast progenitor, was transferred during the course of evolution into the nuclear genome of the endosymbiotic host. Codon usage in the gene for chloroplast GAPDH of maize is radically different from that employed by present-day chloroplasts and from that of the cytosolic (glycolytic) enzyme from the same cell. This reveals the presence of subcellular selective pressures which appear to be involved in the optimization of gene expression in the economically important graminaceous monocots.  相似文献   

10.
11.
At less than 90 Mbp, the tiny nuclear genome of the carnivorous bladderwort plant Utricularia is an attractive model system for studying molecular evolutionary processes leading to genome miniaturization. Recently, we reported that expression of genes encoding DNA repair and reactive oxygen species (ROS) detoxification enzymes is highest in Utricularia traps, and we argued that ROS mutagenic action correlates with the high nucleotide substitution rates observed in the Utricularia plastid, mitochondrial, and nuclear genomes. Here, we extend our analysis of 100 nuclear genes from Utricularia and related asterid eudicots to examine nucleotide substitution biases and their potential correlation with ROS-induced DNA lesions. We discovered an unusual bias toward GC nucleotides, most prominently in transition substitutions at the third position of codons, which are presumably silent with respect to adaptation. Given the general tendency of biased gene conversion to drive GC bias, and of ROS to induce double strand breaks requiring recombinational repair, we propose that some of the unusual features of the bladderwort and its genome may be more reflective of these nonadaptive processes than of natural selection.  相似文献   

12.
In Trypanoplasma borelli, a representative of the Bodonina within the Kinetoplastida, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity was detected in both the cytosol and glycosomes. This situation is similar to that previously found in Trypanosomatidae, belonging to a different Kinetoplastida suborder. In Trypanosomatidae different isoenzymes, only distantly related, are responsible for the activity in the two cell compartments. In contrast, immunoblot analysis indicated that the GAPDH activity in cytosol and glycosomes of T. borelli should be attributed to identical or at least very similar proteins related to the glycosomal GAPDH of Trypanosomatidae. Moreover, only genes related to the glycosomal GAPDH genes of Trypanosomatidae could be detected. All attempts to identify a gene related to the one coding for the trypanosomatid cytosolic GAPDH remained unsuccessful. Two tandemly arranged genes were found which are 95% identical. The two encoded polypeptides differ in 17 residues. Their sequences are 72–77% identical to the glycosomal GAPDH of the other Kinetoplastida and share with them some characteristic features: an excess of positively charged residues, specific insertions, and a small carboxy-terminal extension containing the sequence -AKL. This tripeptide conforms to the consensus signal for targeting of proteins to glycosomes. One of the two gene copies has undergone some mutations at positions coding for highly conserved residues of the active site and the NAD+-binding domain of GAPDH. Modeling of the protein's three-dimensional structure suggested that several of the substitutions compensate each other, retaining the functional coenzyme-binding capacity, although this binding may be less tight. The presented analysis of GAPDH in T. borelli gives further support to the assertion that one isoenzyme, the cytosolic one, was acquired by horizontal gene transfer during the evolution of the Kinetoplastida, in the lineage leading to the suborder Trypanosomatina (Trypanosome, Leishmania), after the divergence from the Bodonina (Trypanoplasma). Furthermore, the data clearly suggest that the original GAPDH of the Kinetoplastida has been compartmentalized during evolution.Abbreviations GAPDH glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) - HK hexokinase (EC 2.7.1.1) - PGI glucosephosphate isomerase (EC 5.3.1.9) - PGK phosphoglycerate kinase (EC 2.7.2.3) - PYK pyruvate kinase (EC 2.7.1.40) - TIM triosephosphate isomerase (EC 5.3.1.1) - SDS sodium dodecyl sulfate - SSC saline sodium citrate (0.15 M NaCl, 15 mM sodium citrate, pH 7.0) - MYR millions of years Nucleotide sequence data reported in this paper have been submitted to the EMBL/Genbank/DDBJ nucleotide sequence databases under accession number X74535 Correspondence to: P.A.M. Michels  相似文献   

13.
We report the sequencing of a 2,019-bp region of the Streptococcus mutans NG5 genome which contains a 1,428-bp open reading frame (ORF) whose putative translation product had 50% identity to the amino acid sequences of the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenases (GAPN) from maize and pea. This ORF is located approximately 200 bp downstream of the ptsI gene coding for enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport system. Mutant BCH150, in which the putative gapN gene had been inactivated, lacked GAPN activity that was present in the wild-type strain, thus positively identifying the ORF as the S. mutans gapN gene. Another strain of S. mutans, DC10, which contains an insertionally inactivated ptsI gene, still possessed GAPN activity, as did S. salivarius ATCC 25975, which contains an insertion element between the ptsI and gapN genes. Since the wild-type S. mutans NG5 lacks both glucose-6-phosphate dehydrogenase and NADH:NADP oxidoreductase activities, the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase is important as a means of generating NADPH for biosynthetic reactions.  相似文献   

14.
At least 0.08% of the Apis mellifera nuclear genome contains sequences that originated from mitochondria. These nuclear copies of mitochondrial sequences (numts) are scattered all over the honeybee chromosomes and have originated by multiple independent insertions of mitochondrial DNA (mtDNA) as evident by phylogenetic analysis. Apart from original insertions, moderate duplications of numts also contributed to the present pattern and distribution of mitochondrial sequences in honeybee chromosomes. Assimilation of mitochondrial genes in the nuclear genome is mediated by extensive fragmentations of the original inserts. Replication slippage seems to be a major mechanism by which small sequences are inserted or deleted from mtDNA destined to nucleus. Most of the honeybee numts (84%) are located in the nongenic regions. The majority (94%) of the numts that are located in predicted nuclear genes have originated from mitochondrial genes coding for cytochrome oxidase and NADH dehydrogenase subunits. On the other hand, the mitochondrial rRNA or tRNA gene sequences are predominantly (88%) located in nongenic regions of the genome. Evidences also support for exertion of purifying selection on numts located in specific genes. Comparative analysis of numts of European, African, and Africanized honeybees suggests that numt evolution in A. mellifera is probably not demarked by speciation time frame but may be a continuous and dynamic process.  相似文献   

15.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

16.
Molecular phylogenies in angiosperm evolution   总被引:8,自引:0,他引:8  
We have cloned and sequenced cDNAs for the glyceraldehyde-3-phosphate dehydrogenase of glycolysis, gapC, from a bryophyte, a gymnosperm, and three angiosperms. Phylogenetic analyses are presented for these data in the context of other gapC sequences and in parallel with published nucleotide sequences for the chloroplast encoded gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL). Relative-rate tests were performed for these genes in order to assess variation in substitution rate for coding regions, along individual plant lineages studied. The results of both gene analyses suggest that the deepest dichotomy within the angiosperms separates not magnoliids from remaining angiosperms, but monocotyledons from dicotyledons, in sharp contrast to prediction from the Euanthial theory for angiosperm evolution. Furthermore, these chloroplast and nuclear sequence data taken together suggest that the separation of monocotyledonous and dicotyledonous lineages took place in late Carboniferous times [approximately 300 Myr before the present (Mybp)]. This date would exceed but be compatible with the late-Triassic (approximately 220 Mybp) occurrence of fossil reproductive structures of the primitive angiosperm Sanmiguelia lewisii.   相似文献   

17.
To investigate the mechanisms regulating the nucleotide usage in mammalian genes, we analyzed the sequences of three physically linked Hsp70 paralogs in human and mouse. We report that the sequences of HSPA1A and HSPA1B genes are almost identical, whereas the HSPA1L gene contains some regions very similar to HSPA1A/B and some regions with much higher divergence. Phylogenetic analysis reveals that gene conversion has homogenized the entire coding regions of HSPA1A/B and several fragments of HSPA1L. The regions undergoing conversion are all very GC rich, contrarily to the regions not subject to conversion. The pattern of nucleotide substitution in mammalian orthologs suggests that the mechanism increasing the GC content is still functioning. To test the possibility that the high GC content facilitates the expression of Hsp70 during heat-shock, we performed in vitro translation experiments. We failed to detect any effect of GC content on the translation efficiency at high temperatures. Taken together, our data strongly support the biased gene conversion hypothesis of GC-content evolution.  相似文献   

18.
During plant evolution, some plastid genes have been moved to the nuclear genome. These transferred genes are now correctly expressed in the nucleus, their products being transported into the chloroplast. We compared the base compositions, the distributions of some dinucleotides and codon usages of transferred, nuclear and chloroplast genes in two dicots and two monocots plant species. Our results indicate that transferred genes have adjusted to nuclear base composition and codon usage, being now more similar to the nuclear genes than to the chloroplast ones in every species analyzed.  相似文献   

19.
Jabbari K  Bernardi G 《Gene》2000,247(1-2):287-292
In the present work we show that in the Drosophila genome (which covers a 37-51% GC range at a DNA size of approx.50kb) a linear correlation holds between GC (or GC(3)50kb) genomic sequences embedding them. This correlation allows us to position the two compositional distributions of (a) coding sequences, and (b) of long DNA segments relative to each other and to calculate gene concentration across the compositional range of the Drosophila genome. Using this approach, we show that gene concentration increases with increasing GC of the regions embedding the genes, reaching a 7-fold higher level in the GC-richest regions compared with the GC-poorest regions. The gene distribution of the Drosophila genome is, therefore, similar to (although less striking than) that of the human genome, whereas it is very different from those of the Arabidopsis genome, which has about the same size as the Drosophila genome.  相似文献   

20.
Phylogenetic reconstruction is fundamental to study evolutionary biology and historical biogeography. However, there was not a molecular phylogeny of gymnosperms represented by extensive sampling at the genus level, and most published phylogenies of this group were constructed based on cytoplasmic DNA markers and/or the multi-copy nuclear ribosomal DNA. In this study, we use LFY and NLY, two single-copy nuclear genes that originated from an ancient gene duplication in the ancestor of seed plants, to reconstruct the phylogeny and estimate divergence times of gymnosperms based on a complete sampling of extant genera. The results indicate that the combined LFY and NLY coding sequences can resolve interfamilial relationships of gymnosperms and intergeneric relationships of most families. Moreover, the addition of intron sequences can improve the resolution in Podocarpaceae but not in cycads, although divergence times of the cycad genera are similar to or longer than those of the Podocarpaceae genera. Our study strongly supports cycads as the basal-most lineage of gymnosperms rather than sister to Ginkgoaceae, and a sister relationship between Podocarpaceae and Araucariaceae and between Cephalotaxaceae-Taxaceae and Cupressaceae. In addition, intergeneric relationships of some families that were controversial, and the relationships between Taxaceae and Cephalotaxaceae and between conifers and Gnetales are discussed based on the nuclear gene evidence. The molecular dating analysis suggests that drastic extinctions occurred in the early evolution of gymnosperms, and extant coniferous genera in the Northern Hemisphere are older than those in the Southern Hemisphere on average. This study provides an evolutionary framework for future studies on gymnosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号