首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
Glutamine synthetase (GS), which catalyzes the formation of glutamine from ammonium and glutamate in the presence of ATP, is encoded by three distinct gene families: GSI, GSII, and GSIII. Genes encoding GSI are found in the Bacteria and Archaea, whereas GSII genes are found in eukaryotes and a few species of Bacteria. Members of the third family, GSIII, have been described from a limited number of bacteria; however, recent biochemical and molecular data suggest that this type of enzyme is broadly distributed among the algae. Peptide fragments obtained from GS purified from the marine diatom Skeletonema costatum (Greville) Cleve are 77% identical to a partial sequence of GSIII from Chaetoceros compressum Lauder, which permits the unambiguous assignment of the biochemically characterized enzyme to the GSIII gene family. The N-terminal sequence was 43% identical to the GSIII-like enzyme purified from the haptophyte Emiliania huxleyi (Lohm.) Hay et Miller and several residues were conserved among bacterial and eukaryotic GSIII enzymes. The presence of genes encoding GSIII in diatoms and haptophytes indicates that this enzyme family is more broadly distributed in eukaryotes than previously suspected.  相似文献   

2.

Background  

Glutamine synthetase (GS) is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII) are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria) to the Chloroplastida.  相似文献   

3.
Glutamine synthetase (GS) activities of Rhizobia were chromatographically resolved into three distinct forms, GSI, GSII, and GSIII on DEAE cellulose, being eluted with 0.3M, 0.5M and 0.8M KCl, respectively. GSIII was the major form inR. leguminosarum andR. phaseoli. InR. meliloti, however, GSI was the major form. The three forms of GS were also distinguished on the basis of (a) rapid heat inactivation of GSII, (b) insensitivity of GSI to inhibitors, (c) marked inhibition of GSII by thymidine, and (d) inability of Zn++ to inhibit GSIII. The three forms of GS are also distinct molecular entities and are unique to Rhizobia.  相似文献   

4.
Glutamine synthetase (GS) is encoded by three distinct gene families (GSI, GSII, and GSIII) that are broadly distributed among the three domains of life. Previous studies established that GSII and GSIII isoenzymes were expressed in diatoms; however, less is known about the distribution and evolution of the gene families in other chromalveolate lineages. Thus, GSII cDNA sequences were isolated from three cryptophytes (Guillardia theta D. R. A. Hill et Wetherbee, Cryptomonas phaseolus Skuja, and Pyrenomonas helgolandii Santore), and GSIII was sequenced from G. theta. Red algal GSII sequences were obtained from Bangia atropurpurea (Mertens ex Roth) C. Agardh; Compsopogon caeruleus (Balbis ex C. Agardh) Mont.; Flintiella sanguinaria F. D. Ott and Porphyridium aerugineum Geitler; Rhodella violacea (Kornmann) Wehrmeyer and Dixoniella grisea (Geitler) J. L. Scott, S. T. Broadwater, B. D. Saunders, J. P. Thomas et P. W. Gabrielson; and Stylonema alsidii (Zanardini) K. M. Drew. In Bayesian inference and maximum‐likelihood (ML) phylogenetic analyses, chromalveolate GSII sequences formed a weakly supported clade that nested among sequences from glaucophytes, red algae, green algae, and plants. Red algal GSII sequences formed two distinct clades. The largest clade contained representatives from the Cyanidiophytina and Rhodophytina and grouped with plants and green algae. The smaller clade (C. caeruleus, Porphyra yezoensis, and S. alsidii) nested within the chromalveolates, although its placement was unresolved. Chromalveolate GSIII sequences formed a well‐supported clade in Bayesian and ML phylogenies, and mitochondrial transit peptides were identified in many of the sequences. There was strong support for a stramenopile‐haptophyte‐cryptophyte GSIII clade in which the cryptophyte sequence diverged from the deepest node. Overall, the evolutionary history of the GS gene families within the algae is complex with evidence for the presence of orthologous and paralogous sequences, ancient and recent gene duplications, gene losses and replacements, and the potential for both endosymbiotic and lateral gene transfers.  相似文献   

5.
6.
Full-length messenger RNA sequences greatly improve genome annotation   总被引:3,自引:0,他引:3  
Haas BJ  Volfovsky N  Town CD  Troukhan M  Alexandrov N  Feldmann KA  Flavell RB  White O  Salzberg SL 《Genome biology》2002,3(6):research0029.1-research002912
  相似文献   

7.
Abstract: The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces , while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.  相似文献   

8.
The GS3 locus located in the pericentromeric region of rice chromosome 3 has been frequently identified as a major QTL for both grain weight (a yield trait) and grain length (a quality trait) in the literature. Near isogenic lines of GS3 were developed by successive crossing and backcrossing Minghui 63 (large grain) with Chuan 7 (small grain), using Minghui 63 as the recurrent parent. Analysis of a random subpopulation of 201 individuals from the BC3F2 progeny confirmed that the GS3 locus explained 80–90% of the variation for grain weight and length in this population. In addition, this locus was resolved as a minor QTL for grain width and thickness. Using 1,384 individuals with recessive phenotype (large grain) from a total of 5,740 BC3F2 plants and 11 molecular markers based on sequence information, GS3 was mapped to a DNA fragment approximately 7.9 kb in length. A full-length cDNA corresponding to the target region was identified, which provided complete sequence information for the GS3 candidate. This gene consists of five exons and encodes 232 amino acids with a putative PEBP-like domain, a transmembrane region, a putative TNFR/NGFR family cysteine-rich domain and a VWFC module. Comparative sequencing analysis identified a nonsense mutation, shared among all the large-grain varieties tested in comparison with the small grain varieties, in the second exon of the putative GS3 gene. This mutation causes a 178-aa truncation in the C-terminus of the predicted protein, suggesting that GS3 may function as a negative regulator for grain size. Cloning of such a gene provided the opportunity for fully characterizing the regulatory mechanism and related processes during grain development.  相似文献   

9.
The complete assimilatory nitrate reductase (NR) gene from the pennate diatom Phaeodactylum triconutum Bohlin was sequenced from cDNA and compared with NR sequences from fungi, green algae, vascular plants, and the recently sequenced genome of the centric diatom Thalassiosira pseudonana Hasle and Heimdal CCMP1335. In all the major eukaryotic nitrate reductase (Euk‐NR) functional domains, diatom NR gene sequences are generally 50%–60% identical to plant and alga sequences at the amino acid level. In the less conserved N‐terminal, hinge 1, and hinge 2 regions, homology to other NR sequences is weak, generally<30%. Two PCR primer sets capable of amplifying Euk‐NR from plants, algae, and diatoms were designed. One primer set was used to amplify a 750‐base pair (bp) NR fragment from the cDNA of five additional diatom strains. The PCR amplicon spans part of the well‐conserved dimer interface region, the more variable hinge 1 region, and part of the conserved cytochrome b heme binding region. The second primer set, targeted to the dimer region, was used to amplify an approximately 400‐bp fragment of the NR gene from DNA samples collected in Monterey Bay, California and in central New Jersey inner continental shelf (LEO‐15 site) waters. Only diatom‐like NR sequences were recovered from Monterey Bay samples, whereas LEO‐15 samples yielded NR sequences from a range of photosynthetic eukaryotes. The prospect of using DNA‐ and RNA‐based methods to target the NR genes of diatoms specifically is a promising approach for future physiological and ecological experiments.  相似文献   

10.
We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5 and 3 splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg2+- and ATP-dependent manner, and this activity was inhibited by 4-(9-acridinylamino)-3-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII ts yeast mutant.  相似文献   

11.
12.
A full-length cDNA clone (pGSP114) encoding glutamine synthetase was isolated from a gt11 library of the gymnosperm Pinus sylvestris. Nucleotide sequence analysis showed that pGSP114 contains an open reading frame encoding a protein of 357 amino acid residues with a calculated molecular mass of 39.5 kDa. The derived amino acid sequence was more homologous to cytosolic (GS1) (78–82%) than to chloroplastic (GS2) (71–75%) glutamine synthetase in angiosperms. The lack of N-terminal presequence and C-terminal extension which define the primary structure of GS2, also supports that the isolated cDNA encodes cytosolic GS. Southern blot analysis of genomic DNA from P. sylvestris and P. pinaster suggests that GS may be encoded by a small gene family in pine. GS mRNA was more abundant in cotyledons and stems than in roots of both Scots and maritime pines. Western blot analysis in P. sylvestris seedlings showed that only one GS polypeptide, similar in size to GS1 in P. pinaster, could be detected in several different tissues. Our results suggest that cytosolic GS is mainly responsible for glutamine biosynthesis in pine seedlings.This paper is dedicated to the memory of Dr. Jesús S. Olavarría.  相似文献   

13.
A cDNA-encoding glutamine synthetase (GS) was isolated from the marine diatom Skeletonema costatum (Greville) Cleve by PCR amplification. Nucleic acid and deduced amino acid sequences of the diatom GS were greater than 50% identical to GS from green algae and vascular plants, and phylogenetic analysis established the diatom GS as a member of the GSII gene family. The presence of an N-terminus signal sequence, identified on the basis of sequence similarity with other chloroplast-localized proteins from diatoms, suggests that the encoded GS isoenzyme is localized to the chloroplast. The GS mRNA was present in log-phase cells grown with either nitrate or ammonium as the sole added nitrogen source. Results from Southern blot analysis of genomic DNA suggested that the cDNA isolated in this study was either a member of a small, highly conserved gene family or that there was allelic variation within the region examined. Phylogenetic analyses further indicated that genes encoding GS from the diatom and two species of green algae diverged prior to the gene duplication, to the isoenzymes in vascular plants, supporting the hypothesis that GS isoenzymes in diatoms, green algae, and vascular plants arose through independent evolutionary events.  相似文献   

14.
Summary Focusing on the synonymous substitution rate, we carried out detailed sequence analyses of hominoid mitochondrial (mt) DNAs of ca. 5-kb length. Owing to the outnumbered transitions and strong biases in the base compositions, synonymous substitutions in mtDNA reach rapidly a rather low saturation level. The extent of the compositional biases differs from gene to gene. Such changes in base compositions, even if small, can bring about considerable variation in observed synonymous differences and may result in the region-dependent estimate of the synonymous substitution rate. We demonstrate that such a region dependency is due to a failure to take proper account of heterogeneous compositional biases from gene to gene but that the actual synonymous substitution rate is rather uniform. The synonymous substitution rate thus estimated is 2.37 ± 0.11 × 10–8 per site per year and comparable to the overall rate for the noncoding region. On the other hand, the rate of nonsynonymous substitutions differs considerably from gene to gene, as expected under the neutral theory of molecular evolution. The lowest rate is 0.8 × 10–9 per site per year forCOI and the highest rate is 4.5 × 10–9 forATPase 8, the degree of functional constraints (measured by the ratio of the nonsynonymous to the synonymous substitution rate) being 0.03 and 0.19, respectively. Transfer RNA (tRNA) genes also show variability in the base contents and thus in the nucleotide differences. The average rate for 11 tRNAs contained in the 5-kb region is 3.9 × 10–9 per site per year. The nucleotide substitutions in the genome suggest that the transition rate is about 17 times faster than the transversion rate.  相似文献   

15.
Nitzschia palea is a common freshwater diatom used as a bioindicator because of its tolerance of polluted waterways. There is also evidence it may be the tertiary endosymbiont within the “dinotom” dinoflagellate Durinskia baltica. A putative strain of N. palea was collected from a pond on the University of Virginia's College at Wise campus and cultured. For initial identification, three markers were sequenced—nuclear 18S rDNA, the chloroplast 23S rDNA, and rbcL. Morphological characteristics were determined using light and scanning electron microscopy; based on these observations the cells were identified as N. palea and named strain “Wise.” DNA from N. palea was deep sequenced and the chloroplast and mitochondrial genomes assembled. Single gene phylogenies grouped N. palea—Wise within a clearly defined N. palea clade and showed it was most closely related to the strain “SpainA3.” The chloroplast genome of N. palea is 119,447 bp with a quadripartite structure, 135 protein‐coding, 28 tRNA, and 3 rRNA genes. The mitochondrial genome is 37,754 bp with a single repeat region as found in other diatom chondriomes, 37 protein‐coding, 23 tRNA, and 2 rRNA genes. The chloroplast genomes of N. palea and D. baltica have identical gene content, synteny, and a 92.7% pair‐wise sequence similarity with most differences occurring in intergenic regions. The N. palea mitochondrial genome and D. baltica's endosymbiont mitochondrial genome also have identical gene content and order with a sequence similarity of 90.7%. Genome‐based phylogenies demonstrated that D. baltica is more similar to N. palea than any other diatom sequence currently available. These data provide the genome sequences of two organelles for a widespread diatom and show they are very similar to those of Durinskia baltica's endosymbiont.  相似文献   

16.
17.
Although the endosymbiotic evolution of chloroplasts through primary and secondary associations is well established, the evolutionary timing and stability of the secondary endosymbiotic events is less well resolved. Heterokonts include both photosynthetic and nonphotosynthetic members and the nonphotosynthetic lineages branch basally in phylogenetic reconstructions. Molecular and morphological data indicate that heterokont chloroplasts evolved via a secondary endosymbiosis, involving a heterotrophic host cell and a photosynthetic ancestor of the red algae and this endosymbiotic event may have preceded the divergence of heterokonts and alveolates. If photosynthesis evolved early in this lineage, nuclear genomes of the nonphotosynthetic groups may contain genes that are not essential to photosynthesis but were derived from the endosymbiont genome through gene transfer. These genes offer the potential to trace the evolutionary history of chloroplast gains and losses within these lineages. Glutamine synthetase (GS) is essential for ammonium assimilation and glutamine biosynthesis in all organisms. Three paralogous gene families (GSI, GSII, and GSIII) have been identified and are broadly distributed among prokaryotic and eukaryotic lineages. In diatoms (Heterokonta), the nuclear-encoded chloroplast and cytosolic-localized GS isoforms are encoded by members of the GSII and GSIII family, respectively. Here, we explore the evolutionary history of GSII in both photosynthetic and nonphotosynthetic heterokonts, red algae, and other eukaryotes. GSII cDNA sequences were obtained from two species of oomycetes by polymerase chain reaction amplification. Additional GSII sequences from eukaryotes and bacteria were obtained from publicly available databases and genome projects. Bayesian inference and maximum likelihood phylogenetic analyses of GSII provided strong support for the monophyly of heterokonts, rhodophytes, chlorophytes, and plants and strong to moderate support for the Opisthokonts. Although the phylogeny is reflective of the unikont/bikont division of eukaryotes, we propose based on the robustness of the phylogenetic analyses that the heterokont GSII gene evolved via endosymbiotic gene transfer from the nucleus of the red-algal endosymbiont to the nucleus of the host. The lack of GSIII sequences in the oomycetes examined here further suggests that the GSIII gene that functions in the cytosol of photosynthetic heterokonts was replaced by the endosymbiont-derived GSII gene.  相似文献   

18.
Hypotrich ciliates present a macronuclear genome consisting of gene-sized instead of chromosome-sized DNA molecules. Exploiting this unique eukaryotic genome feature, we introduce, for the first time in ciliates, a rapid and easy PCR method using telomeric primers to isolate small complete macronuclear DNA molecules or minichromosomes. Two presumably abundant macronuclear DNA molecules, containing ribosomal genes, were amplified from the Oxytricha (Sterkiella) nova complete genome after using this method, and then were cloned and sequenced. The 5S rDNA sequence of O. (S.) nova is the third one reported among hypotrich ciliates; its primary and secondary structure is compared with other eukaryotic 5S rRNAs. The ribosomal protein S26 gene is the first one reported among ciliates. This “End-End-PCR” method might be useful to obtain similar gene-sized macronuclear molecules from other hypotrich ciliates, and, therefore, to increase our knowledge on ribosomal genes in these eukaryotic microorganisms.  相似文献   

19.
银色裂腹鱼(Schizothorax argentatus)在我国仅分布于新疆地区的伊犁河流域,是我国裂腹鱼类中珍稀濒危品种之一,具有较高的科研和经济价值。本研究采用高通量测序技术获得了银色裂腹鱼长度为16580 bp的线粒体基因组全序列,其基因组成和排列顺序均与典型的脊椎动物相似,共有13个蛋白质编码基因、22个tRNA基因、2个rRNA基因和1个非编码区(D-loop)。碱基组成分别为A(30.25%)、G(17.28%)、C(27.20%)和T(25.27%),呈现明显的AT偏好性和反G偏倚。tRNA基因中仅tRNA-Ser(GCU)因缺少二氢尿嘧啶茎而无法形成典型的三叶草结构。ND6基因的AT-skew和GC-skew值波动最大,揭示该基因经历的选择和突变压力可能与其他基因不同。银色裂腹鱼线粒体控制区包含了3个不同的结构域:终止序列区(ETAS)、中央保守区(CSB-F、CSB-E、CSB-D和CSB-B)和保守序列区(CSB1、CSB2和CSB3),且在CSB3下游约50 bp处识别到鲤形目(Cypriniformes)鱼类中普遍存在的保守序列片段TT(AT)nGTG。基于28种裂腹鱼属鱼类线粒体基因组全序列构建的系统发育关系表明银色裂腹鱼分化时间较早,与其他类群亲缘关系较远,这可能与其所生活的水域地理位置和水文环境有密切关系。  相似文献   

20.
The RAB27A/Melanophilin/Myosin-5a tripartite protein complex is required for capturing mature melanosomes in the peripheral actin network of melanocytes for subsequent transfer to keratinocytes. Mutations in any one member of this tripartite complex cause three forms of Griscelli syndrome (GS), each with distinct clinical features but with a similar cellular phenotype. To date, only one case of GS type III (GSIII), caused by mutations in the Melanophilin (MLPH) gene, has been reported. Here, we report seven new cases of GSIII in three distinct Arab pedigrees. All affected individuals carried a homozygous missense mutation (c.102C>T; p.R35W), located in the conserved Slp homology domain of MLPH, and had hypomelanosis of the skin and hair. We report the first cellular studies on GSIII melanocytes, which demonstrated that MLPH(R35W) causes perinuclear aggregation of melanosomes in melanocytes, typical for GS. Additionally, co-immunoprecipitation assays showed that MLPH(R35W) lost its interaction with RAB27A, indicating pathogenicity of the R35W mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号