首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing contamination and higher enrichment ratio of non-essential heavy metal cadmium (Cd) induce various toxic responses in plants when accumulated above the threshold level. These effects and growth responses are genotype and Cd level dependent. An experiment was conducted to analyze the effect of Cd toxicity in Brassica juncea [L] Czern and Coss by selecting its two varieties Varuna and RH-30. Cadmium (0, 25, 50 or 100 mg CdCl2 kg−1 of soil) fed to soil decreased the values of growth characteristics, activity of nitrate reductase and leaf water potential, whereas activities of antioxidant enzymes and proline content increased with the increasing concentration of Cd, observed at 30 and 60 day stages of growth, in both the varieties. Moreover, Cd uptake by the roots was higher in RH-30 than Varuna. Also the activity of antioxidant enzymes and proline accumulation were higher in Varuna with increasing soil level of Cd. Out of the two varieties, Varuna was more tolerant than RH-30 to Cd stress.  相似文献   

2.
The role of 28-homobrassinolide (HBL) in countering nickel-induced oxidative damage through overexpression of antioxidant enzymes and proline in Vigna radiata has been investigated. Two varieties of V. radiata, one sensitive to Ni (PDM-139) and the other tolerant to Ni (T-44), were sown in the soil fed with different levels (0, 50, 100 or 150 mg kg−1) of Ni, and at 29-day stage, foliage of plants was applied with deionized water (control), 10−8 or 10−6 M of HBL. The plants were sampled at 45-day stage of growth to assess various physiological as well as biochemical characteristics. The remaining plants were allowed to grow up to maturity to study the yield characteristics. The growth traits, leghemoglobin, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, photosynthesis efficiency, leaf water potential, activities of nitrate reductase, carbonic anhydrase and nitrogenase decreased proportionately with the increasing concentrations of nickel, whereas electrolyte leakage, various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and accumulation of proline increased at 45-day stage. However, the exogenously applied HBL to the nickel-stressed or non-stressed plants improved growth, nodulation and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and accumulation of proline. The deleterious impact of Ni on the plants was concentration dependent where HBL applied to the foliage induced overexpression of antioxidant enzyme and accumulation of proline (osmolyte) which could have conferred tolerance to Ni up to 100 mg kg−1, resulting in improved growth, nodulation, photosynthesis and yield attributes.  相似文献   

3.
The presence of cadmium in the soil above a particular level is proposed to check not only plant growth but also productivity and fruit quality. Therefore, in the present study investigations are directed to evaluate the effect of four levels of cadmium (3, 6, 9, 12 mg kg−1) in interaction with two analogs of brassinosteroids on the growth, fruit yield and quality of tomato. Under greenhouse conditions plants were analyzed for antioxidant system activity and photosynthetic assimilation efficiency. Cd stressed plants exhibited poor growth and biological yield. The metal also had a negative impact on the antioxidant system of the resulting fruits. However, the follow up application of BRs (10−8 M) neutralized the damaging effects of the metal on the plants.  相似文献   

4.
Photosynthetic performance, contents of chlorophyll and associated pigments, cellular damage and activities of antioxidative enzymes were investigated in two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to cadmium (Cd) stress. Exposure to Cd severely restricted the net photosynthetic rate (P(N)) of RH-30 compared to Varuna. This corresponded to the reductions in the activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase (Rubisco) in both the cultivars. Decline in chlorophyll (Chl) (a+b) and Chl a content was observed but decrease in Chl b was more conspicuous in Varuna under Cd treatments, which was responsible for higher Chl a:b ratio. Additionally, the relative amount of anthocyanin remained higher in Varuna compared to RH-30 even in the presence of high Cd concentration, while percent pheophytin content increased in RH-30 at low Cd concentration. A higher concentration of Cd (100 mg Cd kg(-1) soil) resulted in elevated hydrogen peroxide (H(2)O(2)) content in both the cultivars. However, Varuna exhibited lower content of H(2)O(2) in comparison to RH-30. This was reflected in the increased cellular damage in RH-30, expressed by greater thiobarbituric acid reactive substances (TBARS) content and electrolyte leakage. The enhanced activities of antioxidative enzymes, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and also lower activity of superoxide dismutase (SOD) in Varuna alleviated Cd stress and protected the photosynthetic activity.  相似文献   

5.
The main objective of this study is to investigate the cytotoxic, genotoxic and antioxidant properties of zingiberene (ZBN) in an in vitro rat brain cell culture study. The cytotoxic effect was determined against the rat neuron and N2a neuroblastoma (N2a-NB) cell lines using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while the antioxidant activity was assessed using the total antioxidant capacity (TAC) and total oxidative stress (TOS) assays. The effects on DNA damage were also evaluated in this study by the single cell gel electrophoresis assay. The results indicated that ZBN has an anti-proliferative activity suppressing the proliferation of N2a-NB cells at concentrations over 50 mg L−1 and neuron cells at concentrations over 150 mg L−1. In addition, ZBN treatments at higher doses (≤50 mg L−1) led to increases of TOS levels in N2a-NB cell cultures. However 25 mg L−1 of ZBN treatment caused increases of TAC levels in cultured neuron and N2a-NB cell cultures while ZBN at doses of 10–400 mg L−1 did not increase the number of total damage score in both cell lines. This study clearly indicates that ZBN has a significant potential to be used as a natural anticancer agent in cultured N2a-NBs.  相似文献   

6.
Wani AS  Irfan M  Hayat S  Ahmad A 《Protoplasma》2012,249(1):75-87
The present paper deals with the effect of exogenous application of proline as a shotgun approach on growth, photosynthesis, and antioxidative system in 25-day-old plants of two different cultivars of Brassica juncea L. (Varuna and RH-30) under natural conditions. Exogenous application of proline significantly increased plant growth, photosynthetic rate, and the activities of antioxidant enzymes, compared with untreated seedlings. Pre-sowing seed soaking in 20 mM proline, for 8 h, proved best among all the other concentrations used.  相似文献   

7.
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0°C, 10°C, 17°C, and 27°C in moderate light. At 27°C, the sodB and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB strain was more sensitive to chilling stress at 17°C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB strains exhibited similar chilling damage at 0°C and 10°C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB strain than in the wild type at 17°C and 27°C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0°C.  相似文献   

8.
Bacopa monnieri (Linn.) Wettst. commonly known as waterhyssop, Brahmi plant, traditionally used for memory enhancement, nerve tonic, epilepsy, central nervous system (CNS), antidepressant, anxiety, blood pressure and antioxidant activities. Due to pharmaceutical demands its lost natural habitat. At this juncture we describe a resourceful protocol for micropropagation of water hyssop plant. Surface sterilized leaf and nodal explants were inoculated on basal MS semi-solid medium added with PGRs; auxins, cytokinins. Highest calli formation from leaf explants was obtained on NAA (2.5 mg−1) and showed (94.22%) accompanied via 2,4-D showed (2.5 mg−1; 82.43%), maximum calli formation in nodal explants was obtained on 2,4-D showed (2.5 mg−1; 71.14%) followed by NAA (2.5 mg−1) showed (62.15%), in internodes explants uppermost calli formation was obtained from 2,4-D showed (2.5 mg−1; 65.21%) followed by NAA (2.5 mg−1) showed (52.14%). The maximum somatic embryogenic callus, calli induction and formation (84%) was observed on 2,4-D + KIN (2.0 + 1.5 mg−1) amended solid medium. Uppermost shoot formation was observed in combination of IAA + BAP (1.0 + 1.0 mg−1) showed (78.54%) shoot formation followed by IBA (2.0 mg−1) alone showed (75.37%). The maximum shoot elongation was noticed from NAA + BAP (3.0 + 3.0 mg−1) with 21.21 cm followed by NAA (2.0 mg−1) showed (15.22 cm) although, chief root formation was obtained from IBA (2.0 mg−1) with 83.75% root formation along higher number of roots (47.43%) per shoot. Followed by IAA (2.0 mg−1) showed root induction (73.43%) and no of roots (38.54%) per shoot. In hardening under pot condition plants survivability (100%) was observed under glass house conditions, the present in vitro PTC techniques is extremely significant to gratifying its natural conservation.  相似文献   

9.
The photolysis of riboflavin (RF) in the presence of acetate buffer (pH 3.8–5.6) and carbonate buffer (pH 9.2–10.8) has been studied using a multicomponent spectrophotometric method for the simultaneous assay of RF and its photoproducts. Acetate and carbonate buffers have been found to catalyze the photolysis reaction of RF. The apparent first-order rate constants for the acetate-catalyzed reaction range from 0.20 to 2.86 × 10−4 s−1 and for the carbonate-catalyzed reaction from 3.33 to 15.89 × 10−4 s−1. The second-order rate constants for the interaction of RF with the acetate and the carbonate ions range from 2.04 to 4.33 × 10−4 M−1 s−1 and from 3.71 to 11.80 × 10−4 M−1 s−1, respectively. The k-pH profile for the acetate-catalyzed reaction is bell shaped and for the carbonate-catalyzed reaction a steep curve. Both HCO3 and CO32 − ions are involved in the catalysis of the photolysis reaction in alkaline solution. The rate constants for the HCO3 and CO32 − ions catalyzed reactions are 0.72 and 1.38 × 10−3 M−1 s−1, respectively, indicating a major role of CO32 − ions in the catalysis reaction. The loss of RF fluorescence in acetate buffer suggests an interaction between RF and acetate ions to promote the photolysis reaction. The optimum stability of RF solutions is observed in the pH range 5–6, which is suitable for pharmaceutical preparations.KEY WORDS: acetate effect, carbonate effect, photolysis, riboflavin, spectrophotometric assay  相似文献   

10.
An animal protein-free medium was developed for Drosophila melanogaster S2 (S2AcGPV2) cells genetically modified to produce the rabies virus G glycoprotein (GPV). IPL-41, used as a basal medium, was supplemented with yeastolate, carbohydrates, amino acids and lipids aiming initially to reduce and further to eliminate the need of fetal bovine serum. The S2AcGPV2 cells were fully capable of growing in serum-free supplemented IPL-41 medium containing 6 g L−1 yeastolate ultrafiltrate, 10 g L−1 glucose, 3.5 g L−1 glutamine, 0.5 g L−1 fructose, 2 g L−1 lactose, 0.6 g L−1 tyrosine, 1.48 g L−1 methionine and 1% (v/v) lipid emulsion, reaching 19 × 106 cells mL−1. Maximum specific growth rate and cell productivity were 0.025 h−1 and 0.57 × 105 cells mL−1 h−1, respectively. Glucose and lactose were consumed during cell culture, but not fructose. Lactate concentration generally decreased during cell culture, while ammonium concentration reached 167 mg L−1, however, without noticeable deleterious effects on cell growth. GPV concentration values achieved were, however, modest in the proposed medium formulation.  相似文献   

11.
In the era of climate change, decreased precipitation and increased evapo-transpiration hampers the yield of several cereal crops along with the soil salinity and poor ground water resource. Wheat being the moderately tolerant crop face many challenges in the arid and semi-arid regions under irrigated agriculture. In view of this, the study was planned to explore the potential of durum wheat genotypes under salinity on the basis of physiological traits. Experiment was designed as RBD in three replications to evaluate 15 wheat genotypes with moderate saline irrigation (ECiw – 6 dS m−1) and extreme saline irrigation (ECiw – 10 dS m−1) along with one set of control (Best available water). Different physiological traits such as water potential (ψp), osmotic potential (ψs), relative water content (RWC), Na+ and K+ content were recorded in roots as well as shoots at the reproductive stage whereas photosynthetic rate and chlorophyll content were measured in the flag leaves. A significant variability (p < 0.001) was noted among the genotypes under different stress environments and it was observed that durum genotype HI 8728 and HI 8737 showed less reduction in plant water traits (RWC, ψp and ψs) than the salinity tolerant checks of bread wheat KRL 99 and KRL 3–4. HD 4728 and HI 8708 maintained higher photosynthetic rate as well as higher chlorophyll content under the extreme salinity level of ECiw – 10 dSm−1. No significant differences were found in root Na+ in genotypes KRL 99 (3.17g), KRL 3–4 (3.34g) and HI 8737 (3.41g) while in shoots, lowest accumulation was seen in KRL 99, MACS 3949 and KRL 3–4 at ECiw – 10 dSm−1. The mean range of K+ content was 7.60–9.74% in roots and 4.21–6.61% in shoots under control environment which decreased to 50.77% in roots and 46.05% in shoots under extreme salinity condition of ECiw – 10 dSm−1. At ECiw – 10 dSm−1, KRL 99 maintained highest K+/Na+ in both root and shoot followed by KRL 3–4, HI 8737, MACS 3949, HD 4728 in roots and MACS 3949, KRL 3–4, MACS 4020, HD 4758, MACS 3972 and HI 8713 in shoots. The differential response of durum wheat genotypes under salinity particularly for physiological traits, confer their adaptability towards stress environments and exhibit their potential as genetic sources in breeding programs for improving salt stress tolerance.  相似文献   

12.
Azolla microphylla plants exposed directly to NaCl (13 dsm-1) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm-1 NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm-1) for 7 days on subsequent exposure to 13 dsm-1 NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na+/K+ ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.  相似文献   

13.
We employed far-infrared spectroscopy to observe the amount of salt that penetrates into collagen fiber masses. The absorption properties of collagen sheets prepared from tilapia skin, bovine skin, rat tail, and sea cucumber dermis were measured using a transmission Fourier transform spectrometer in a band from approximately 100 to 700 cm−1. We confirmed that the absorbance spectra of the four types of dried collagen sheet show good agreement, even though the amino acid compositions differed. The absorbance peaks observed in the band corresponded to collective vibrations of plural functional groups such as methylene and imino groups in collagen. When salt solution was added to the collagen sheets and then dried, the spectral shapes of the sheets at approximately 166 cm−1 were clearly different from those of the plain collagen sheets. The differential absorbance between wavenumbers 166 cm−1 and 250 cm−1 sensitively reflected the difference between higher-order structures, and the salt diffusion (crystallization) depended on the collagen fiber condition. From these results, we consider that spectral changes can be used for the numerical evaluation of salt penetration into a collagen fiber scaffold.  相似文献   

14.
Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.  相似文献   

15.

Background

In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified.

Methodology/Principal Findings

We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Δslr1768 mutant with the wild-type, we found that Δslr1768 has a conditional phenotype; specifically under high light conditions (130 µmol m−2 s−1) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 µmol m−2 s−1) the phenotype is significantly reduced, with a growth rate similar to the wild-type and only a low frequency of cells with evident thylakoid disruption.

Conclusions/Significance

This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids.  相似文献   

16.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   

17.
Effect of penconazole (PEN) treatment on drought-stressed Mentha pulegium L. plants was investigated. Six weeks after sowing, seedlings were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity (FC) with or without PEN (15 mg l−1) for 4 weeks. Results showed that the seedlings at 75 % FC showed maximum growth and water supply lower than 75 % FC was the threshold of drought-initiated negative effects on seedling growth. Drought stress significantly induced proline and carbohydrate contents and the decreased chlorophyll, photosynthesis parameters, soluble proteins and ion accumulations. Exogenous PEN increased the growth parameters, pigments, photosynthesis and ion accumulations in drought stressed and unstressed plants, but the effects of PEN were more significant under water deficit conditions. PEN also reduced the negative effects of drought by osmotic balance and protein accumulations. Electrophoretic patterns indicated that PEN treatment increased the intensity of some protein bands with the molecular weights of 30 kDa in shoot and 31 kDa in roots, and several new protein bands with the molecular masses between 116 and 14 kDa appeared in leaves, shoots and roots. These results suggest that the PEN application can be a useful tool in alleviation of effects of drought stress in M. pulegium plants.  相似文献   

18.

Background and Aims

Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 µmol m−2 s−1. However, desiccation at irradiance of 350 µmol m−2 s−1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery.

Methods

Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 µmol m−2 s−1; ML) irradiance were compared with those under low (30 µmol m−2 s−1; LL) irradiance.

Key Results

Well-watered plants (control) at 100 µmol m−2 s−1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML.

Conclusions

Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.Key words: Haberlea rhodopensis, resurrection plant, electron microscopy, blue–green fluorescence, chlorophyll fluorescence  相似文献   

19.

Background and Aims

Previous work has shown that the entire photosynthetic light response curve, based on both Mitscherlich and Michaelis–Menten functions, could be predicted in an interspecific context through allometric relations linking the parameters of these functions to two static leaf traits: leaf nitrogen (N) content and leaf mass per area (LMA). This paper describes to what extent these allometric relations are robust to changes in soil fertility and the growth irradiance of the plants.

Methods

Plants of 25 herbaceous species were grown under controlled conditions in factorial combinations of low/high soil fertility and low/high growth irradiance. Net photosynthetic rates per unit dry mass were measured at light intensities ranging from 0 to 700 µmol m−2 s−1 photosynthetically active radiation (PAR).

Key Results

The differing growth environments induced large changes in N, LMA and in each of the parameter estimates of the Mitscherlich and Michaelis–Menten functions. However, the differing growth environments induced only small (although significant) changes in the allometric relationships linking N and LMA to the parameters of the two functions. As a result, 88 % (Mitcherlich) and 89 % (Michaelis–Menten) of the observed net photosynthetic rates over the full range of light intensities (0–700 µmol m−2 s−1 PAR) and across all four growth environments could be predicted using only N and LMA using the same allometric relations.

Conclusions

These results suggest the possibility of predicting net photosynthetic rates in nature across species over the full range of light intensities using readily available data.  相似文献   

20.
Turkez H  Togar B  Polat E 《Cytotechnology》2012,64(4):459-464
Permethrin is a common synthetic chemical, widely used as an insecticide in agriculture and other domestic applications. The previous reports indicated that permethrin is a highly toxic synthetic pyrethroid pesticide to human and environmental health. Therefore, the present experiment was undertaken to determine the effectiveness of olive leaf extract in modulating the permethrin induced genotoxic and oxidative damage in rats. The animals used were broadly divided into four (A, B, C and D) experimental groups. Group A rats served as control animals and received distilled water intraperitoneally (n = 5). Groups B and C rats received intraperitoneal injections of permethrin (60 mg kg−1 b.w) and olive leaf extract (500 mg kg−1 b.w), respectively. Group D rats received permethrin (60 mg kg−1 b.w) plus olive leaf extract (500 mg kg−1 b.w). Rats were orally administered their respective feed daily for 21 days. At the end of the experiment rats were anesthetized and serum and bone marrow cell samples were obtained. Genotoxic damage was assessed by micronucleus and chromosomal aberration assays. Total antioxidant capacity and total oxidant status were also measured in serum samples to assess oxidative status. Treatment of Group B with permethrin resulted in genotoxic damage and increased total oxidant status levels. Permethrin treatment also significantly decreased (P < 0.05) total antioxidant capacity level when compared to Group A rats. Group C rats showed significant increases (P < 0.05) in total antioxidant capacity level and no alterations in cytogenetic parameters. Moreover, simultaneous treatments with olive leaf extract significantly modulated the toxic effects of permethrin in Group D rats. It can be concluded that olive leaf extract has beneficial influences and could be able to antagonize permethrin toxicity. As a result, this investigation clearly revealed the protective role of olive leaf extract against the genetic and oxidative damage by permethrin in vivo for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号