首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic lineage, taxonomic affiliation and interrelationships of important asexual entomopathogenic fungal genera were studied using the sequences of partial regions of β-tubulin and rRNA genes. The species structures of Beauveria bassiana and Nomuraea rileyi were also investigated. A total of 147 fungal entries covering 94 species were analysed. Phylogenetic analysis placed all the asexual entomopathogenic fungal species analysed, in the family Clavicipitaceae of the order Hypocreales of Ascomycota. Deep phylogenetic lineages were observed in B. bassiana iterating the complex nature of this species. Some of the isolates assigned to this species separated out more distinctly than morphologically distinguishable genera. Cryptic speciation was also evident in N. rileyi. It is concluded that the asexual fungi with entomopathogenic habit arose from a single lineage in sexual Clavicipitaceae.  相似文献   

2.
The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.  相似文献   

3.
Most wood-inhabiting fungi are assumed to be dispersed primarily by wind, with the exception of a few species involved in mutualistic relationships with insects. In this study we tested whether several species of wood-inhabiting insects can function as dispersal vectors for non-mutualistic fungi, which would indicate that wood-inhabiting fungi can benefit from targeted animal-mediated dispersal. We sampled wood-inhabiting beetles (Coleoptera) from freshly felled wood experimentally added to forests and used DNA metabarcoding to investigate the fungal DNA carried by these insects. Staphylinid beetles rarely contained fungal DNA, while Endomychus coccineus, Glischrochilus hortensis and Glischrochilus quadripunctatus frequently carried fungal DNA with a composition specific to the insect taxon. A large proportion of the obtained fungal sequences (34%) represented decomposer fungi, including well-known wood-decay fungi such as Fomitopsis pinicola, Fomes fomentarius, Trichaptum abietinum and Trametes versicolor. Scanning electron microscopy further showed that some of the fungal material was carried as spores or yeast cells on the insect exoskeletons. Our results suggest that insect-vectored dispersal is of broader importance to wood-inhabiting fungi than previously assumed.  相似文献   

4.
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.  相似文献   

5.
从蔓草虫豆(Atylosia scarabaeoides)、余甘子(Phyllanthus emblica)和黄花稔(Sida acuta)等5种云南元江干热河谷植物的525个组织块中,共分离得到内生真菌371株,内生真菌的分离频率在0.61~0.92之间,且所有植物叶内生真菌的分离频率都明显高于茎(P<0.05)。经形态学鉴定,内生真菌分属于拟茎点霉属(Phomopsis sp.)、离蠕孢属(Bipolaris sp.)和交链孢属(Alternaria sp.)等32个分类单元。拟茎点霉属为干热河谷植物优势内生真菌属,从所有被调查植物的茎叶中都分离得到该属真菌,且相对分离频率高达12.90%~50.54%。内生真菌群落组成的多样性和相似性分析结果表明,云南元江干热河谷植物内生真菌多样性偏低、宿主专一性较小。  相似文献   

6.
This study was conducted to isolate endophytic fungi from oilseed rape (Brassica napus), to identify the fungal endophytes based on morphology and ITS (ITS1-5.8S rDNA-ITS2) sequences, and to evaluate their efficacy in suppression of the plant pathogenic fungi Sclerotinia sclerotiorum and Botrytis cinerea. Selected endophytic fungal isolates were further tested for promoting growth of oilseed rape in potting experiments. A total of 97 endophytic fungal isolates were obtained from roots (35), stems (49) and leaves (13) of B. napus. Forty fungal species were identified and most species (80%) belong to Ascomycota. The species composition is highly diversified with Simpson’s diversity index reaching 0.959. Alternaria alternata is the dominant species accounting for 12.4% of the isolates. Twenty-four isolates exhibited antifungal activity against S. sclerotiorum in dual cultures on potato dextrose agar forming inhibition zones of 3–17 mm in width. The culture filtrates of Aspergillus flavipes CanS-34A, Chaetomium globosum CanS-73, Clonostachys rosea CanS-43 and Leptosphaeria biglobosa CanS-51 in potato dextrose broth exhibited consistent and effective suppression of oilseed rape leaf blight caused by S. sclerotiorum. Fusarium oxysporum CanR-46 was detected capable of production of volatile organic compounds highly inhibitory to S. sclerotiorum and B. cinerea. Moreover, A. alternata CanL-18, Fusarium tricinctum CanR-70 and CanR-71r, and L. biglobosa CanS-51 exhibited growth-promoting effects on oilseed rape. These results suggest that B. napus harbors diversified endophytic fungi, from which potential biocontrol agents against S. sclerotiorum and B. cinerea, and for promoting growth of B. napus can be screened.  相似文献   

7.
《Fungal biology》2014,118(12):956-969
Bryophilous ascomycetes are an overlooked and poorly known fungal group. In this study, the extreme and small-sized niche of Polytrichum piliferum hyaline leaf tips was screened for the presence of these fungi in Finland. Three closely related species were found. Bryochiton perpusillus and Bryochiton monascus were identified from several samples, and DNA isolations revealed a third closely related species, Bryochiton sp. In addition, melanised hyphae, typical to the Bryochiton species, were present in all the samples. According to phylogenetic analyses consisting of combined small subunit (SSU), large subunit (LSU), and 5.8S rDNA sequences, and internal transcribed spacer (ITS) rDNA sequences, the species showed affinity with Teratosphaeriaceae within Capnodiales, and especially with black, meristematic species often inhabiting rock substrate in extreme environments. The connection was supported by meristematic growth of the Bryochiton species in culture. Bryochiton is the second sexual genus associated within the family Teratosphaeriaceae, and B. perpusillus, and B. monascus constitute examples of teleomorphs within a group of meristematic anamorphs. These findings emphasize the multiform diversity underlying poorly researched fungal groups, such as the bryophilous fungi.  相似文献   

8.
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58–63 % and 36–42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.  相似文献   

9.
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84–92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics’ discovery and further increase the pool of fungi available for natural bioactive product screening.  相似文献   

10.
Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.  相似文献   

11.
Communities of arbuscular mycorrhizal (AM) fungi were investigated in Stipa krylovii, Leymus chinensis (Poaceae), Allium bidentatum (Liliaceae), and Astragalus brevifolius (Fabaceae) in the Mongolian steppe to examine the effect of plant species on the communities in this study. The AM fungal communities were examined by molecular analysis based on the partial sequences of a small subunit of the ribosomal RNA gene. The sequences obtained were divided into 23 phylotypes by the sequence similarity >98%. Many of the AM fungal phylotypes included AM fungi previously detected in high-altitude regions in the Tibet and Loes plateaus, which suggested that these AM fungi may have wide distribution with stressful conditions of aridity and coldness. Among the 23 phylotypes, 12 phylotypes were found in all four plants, and 87.4% of the all obtained sequences were affiliated into these 12 types. For the distribution of the AM fungal phylotypes, overlapping of the phylotypes among the four plant species were significantly higher than that simulated by random chance. These results suggested that AM fungal communities were less diversified among the examined plant species.  相似文献   

12.

Background

Orchid species rely on mycorrhizal symbioses with fungi to complete their life cycle. Although there is mounting evidence that orchids can associate with several fungi from different clades or families, less is known about the actual geographic distribution of these fungi and how they are distributed across different orchid species within a genus.

Methodology/Principal Findings

We investigated among-population variation in mycorrhizal associations in five species of the genus Dactylorhiza (D. fuchsii, D. incarnata, D. maculata, D. majalis and D. praetermissa) using culture-independent detection and identification techniques enabling simultaneous detection of multiple fungi in a single individual. Mycorrhizal specificity, determined as the number of fungal operational taxonomic units (OTUs), and phylogenetic diversity of fungi were compared between species, whereas discriminant analysis was used to compare mycorrhizal spectra across populations and species. Based on a 95% cut-off value in internal transcribed spacer (ITS) sequence similarity, a total of ten OTUs was identified belonging to three different clades within the Tulasnellaceae. Most OTUs were found in two or more Dactylorhiza species, and some of them were common and widespread, occurring in more than 50% of all sampled populations. Each orchid species associated with at least five different OTUs, whereas most individuals also associated with two or more fungal OTUs at the same time. Phylogenetic diversity, corrected for species richness, was not significantly different between species, confirming the generality of the observed orchid mycorrhizal associations.

Conclusions/Significance

We found that the investigated species of the genus Dactylorhiza associated with a wide range of fungal OTUs from the Tulasnellaceae, some of which were widespread and common. These findings challenge the idea that orchid rarity is related to mycorrhizal specificity and fungal distribution.  相似文献   

13.
Enkianthus is the most basal extant genus in the phylogeny of ericaceous plants. Its members harbor arbuscular mycorrhiza (AM)-like hyphal structures in their roots but, as yet, no study has surveyed the AM fungal species component. Roots from six species of Enkianthus were collected from five distantly located sites in Japan. Intracellular hyphal coils were observed in the root cortical cells of all species. Fungal DNA sequences of the small subunit ribosomal RNA gene were obtained from 73 of 75 segments of Enkianthus campanulatus roots by PCR using either AML2 or NS31/AM1primer pairs. Results indicated that all E. campanulatus trees were extensively associated with Glomus spp. A phylogenetic analysis showed that 71 root segments harbored fungi belonging to Glomus group A. Among eight delineated clades, seven did not nest with any known AM fungal species. One clade was detected in all roots at all sites at relatively high frequencies, but the rest were detected sporadically at each site. The placement of sequences from distantly located sites into a single clade without known AM fungal species suggests the common association of E. campanulatus with particular AM fungal taxa.  相似文献   

14.
Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae) is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction and fragmentation, but little was known about the relationship between this orchid species and the mycorrhizal fungi. The Rhizoctonia-like fungi are the commonly accepted mycorrhizal fungi associated with orchids. In this study, the distribution, diversity and specificity of culturable Rhizoctonia-like fungi associated with L. japonica species were investigated from seven populations in Northeast China. Among the 201 endophytic fungal isolates obtained, 86 Rhizoctonia-like fungi were identified based on morphological characters and molecular methods, and the ITS sequences and phylogenetic analysis revealed that all these Rhizoctonia-like fungi fell in the same main clade and were closely related to those of Tulasnella calospora species group. These findings indicated the high mycorrhizal specificity existed in L. japonica species regardless of habitats at least in Northeast China. Our results also supported the wide distribution of this fungal partner, and implied that the decline of L. japonica in Northeast China did not result from high mycorrhizal specificity. Using culture-dependent technology, these mycorrhizal fungal isolates might be important sources for the further utilizing in orchids conservation.  相似文献   

15.
Pakaraimaea dipterocarpacea, a member of the Dipterocarpaceae endemic in the Guayana region, is associated with a diverse community of ectomycorrhizal (ECM) fungi. Amongst the 41 ECM fungal species detected in a 400 m2 P. dipterocarpacea ssp. nitida plot in Southern Venezuela, three species belonged to the Sebacinales. We tested whether ECM anatomotype characterization can be used as a feasible element in an integrative taxonomy in this diverse fungal group, where the relevance of fruitbody morphology for species delimitation seems limited. Using a combination of ECM morpho-anatomical characterizations and phylogenetic analyses based on nuclear ITS and LSU sequences, we report three new species. The main distinguishing features of Sebacina guayanensis are the yellowish cell walls together with conspicuous undifferentiated, uniform compact (type B) rhizomorphs. Staghorn-like hyphae are characteristic of S. tomentosa. The combination of clusters of thick-walled emanating hyphae, including hyphae similar to awl-shaped cystidia with basal dichotomous or trichotomous ramifications, and the presence of type B rhizomorphs were characteristic of a third, yet unnamed species. The three species belong to three different, possibly specifically tropical clades in Sebacinales Group A. The geographic distribution of phylogenetically related strains was wide, including a Dicymbe forest in Guyana and an Ecuadorian rainforest with Coccoloba species. We show that ECM morpho-anatomy can be used, in combination with other analyses, to delineate species within Sebacinales Group A. In addition to phylogenetic information, type B rhizomorphs observed in different Sebacinales clades have important ecological implications for this fungal group. The phylogeography of Sebacinales suggests that dispersion and host jump are important radiation mechanisms that shaped P. dipterocarpacea ECM fungal community. This study emphasizes the need for more sequence data to evaluate the hypothesis that phylogeographic relationships between neo- and paleotropical ECM fungal species could be attributed to the vicariance of cross-continental hosts such as the Dipterocarpacae.  相似文献   

16.
Deschampsia antarctica Desv. (Poaceae) represents one of the two vascular plants that have colonized the Antarctic continent, which is usually exposed to extreme environmental conditions. In this work, we have characterized the endophytic fungi associated with the leaves of D. antarctica. Endophytic fungi were recovered from 91 individual plants from different points of Admiralty Bay at King George Island, Antarctica. A total of 26 fungal isolates were obtained from 273 leaf fragments. All isolates were identified by analysis of the sequences of the internal transcribed spacer region (ITS) of the rDNA. Alternaria and Phaeosphaeria were the most frequent genera associated with the plant. Other fungal isolates were identified as Entrophospora sp. and several undescribed Ascomycete species. An interesting result was obtained for the isolates UFMGCB 215 and UFMGCB 262, which were related to fungi associated with bryophytes present in boreal ecosystems. Some isolates showed low identity in the ITS sequences to sequences of fungal species deposited in GenBank, suggesting that these fungi could be new species. This work is the first report on fungal endophytes associated with leaves of the Antarctic grass D. antarctica.  相似文献   

17.
《Mycological Research》2006,110(9):1059-1069
The endangered indigenous tree species Juniperus procera, commonly known as African Pencil Cedar, is an important component of the dry Afromontane vegetation of Ethiopia and was shown to be AM in earlier studies. Here we describe the composition of AM fungi in colonized roots of J. procera from two dry Afromontane forests of Ethiopia. The nuSSU rDNA gene was amplified from colonized roots, cloned and sequenced using AM fungal specific primers that were partly developed for this study. Molecular phylogenetic analysis revealed that all the glomeralean sequences obtained belonged exclusively to the genus Glomus (Glomeraceae). Seven distinct Glomus sequence types were identified that all are new to science. The composition of the AM fungal communities between the sampled trees, and between the two study sites in general, differed significantly. Isolation and utilization of the indigenous AM fungal taxa from the respective sites might be required for successful enrichment plantation of this threatened Juniperus species.  相似文献   

18.
Host identity is among the most important factors in structuring ectomycorrhizal (ECM) fungal communities. Both host–fungal coevolution and host shifts can account for the observed host effect, but their relative significance in ECM fungal communities is not well understood. To investigate these two host-related mechanisms, we used relict forests of Pseudotsuga japonica, which is an endangered endemic species in Japan. As with other Asian Pseudotsuga species, P. japonica has been isolated from North American Pseudotsuga spp. since the Oligocene and has evolved independently as a warm-temperate species. We collected 100 soil samples from four major localities in which P. japonica was mixed with other conifers and broadleaf trees. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM fungi and host species. While 136 ECM fungal species were identified in total, their communities were significantly different between host groups, confirming the existence of the host effect on ECM fungal communities. None of the 68 ECM fungal species found on P. japonica belonged to Pseudotsuga-specific lineages (e.g., Rhizopogon and Suillus subgroups) that are common in North America. Most of ECM fungi on P. japonica were shared with other host fungi or phylogenetically close to known ECM fungi on other hosts in Asia. These results suggest that after migrating, Pseudotsuga-specific fungal lineages may have become extinct in small isolated populations in Japan. Instead, most of the ECM fungal symbionts on P. japonica likely originated from host shifts in the region.  相似文献   

19.
Throughout the industrialized world, wetland species face the greatest risk of extinction from altered environmental conditions and loss of habitat. Manmade wetlands are often the only feasible strategy to provide habitat for these species. Wetland orchids are particularly susceptible to environmental degradation due to potentially limited availability of specialized pollinators and mycorrhizal symbionts. Here, we assess the fungal symbiont diversity of two orchid species, Habenaria radiata and Epipactis thunbergii, occupying three manmade wetlands in Hiroshima Prefecture, Japan to determine if orchids colonizing reconstructed habitats associate with a phylogenetically diverse or narrow suite of fungal symbionts. We collected three individuals each of H. radiata and E. thunbergii, respectively, growing at the first pond, six H. radiata from a second pond, and two E. thunbergii from a third pond. We identified fungal taxa using PCR and DNA sequencing techniques. Habenaria radiata associated with a phylogenetically diverse suite of fungi; in comparison, E. thunbergii associated with a phylogenetically narrow range of fungi dominated by the Tulasnellaceae. These common wetland orchid species readily colonize manmade wetlands, and we propose sampling soils for the presence of appropriate mycorrhizal fungi to determine limitations on orchid population regeneration due to mycorrhizal specificity.  相似文献   

20.
We examined arbuscular mycorrhizal (AM) fungi colonizing the roots of Stipa krylovii, a grass species dominating the grasslands of the steppe zone in Hustai and Uvurkhangai in Mongolia. The AM fungal communities of the collected S. krylovii roots were examined by molecular analysis based on the partial sequences of a small subunit of ribosomal RNA gene as well as AM fungal colonization rates. Almost all AM fungi detected were in Glomus-group A, and were divided into 10 phylotypes. Among them, one phylotype forming a clade with G. intraradices and G. irregulare was the most dominant. Furthermore, it was also found that most of the phylotypes include AM fungi previously detected in high altitude regions in the Eurasian Continent. Significant correlations were found among soil total N, total plant biomass and AM fungal colonization ratio, which suggested that higher plant biomass may be required for the proliferation of AM fungi in the environment. Meanwhile, redundancy analysis on AM fungal distribution and environmental variables suggested that the effect of plant biomass and most soil chemical properties on the AM fungal communities were not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号