首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized eight polyamine perylene diimides to conjugate the efficiency of perylene derivatives in stabilizing G-quadruplex structures and the polyamines' biological activity, due to specific interactions with different DNA domains. Our study was carried out by investigating the ability of these derivatives to induce inter- and intramolecular G-quadruplex structures by polyacrylamide gel electrophoresis (PAGE) and to inhibit telomerase in a modified TRAP assay. The two properties appear to be satisfactorily correlated and they show that the number and distances of positive charges in the side chains dramatically influence both these features. Although our previous studies on perylene derivatives with mono-positively charged side chains indicated that self assembly in aqueous solution leads to a major efficiency, the result observed with the spermine derivative suggests that a too strong aggregation is unfavourable, because it determines a lower solubility of the compounds.  相似文献   

2.
In developing G-quadruplex interactive telomerase inhibitors two main features have to be taken into account: the hydrophobic interactions with the G-quartet plane and the electrostatic interactions with the negatively charged phosphates of the four grooves. In this paper, we report the synthesis of four hydrosoluble coronene derivatives, which are characterized by a large hydrophobic aromatic core and four orthogonal hydrophilic side chains. We have studied their ability to induce both inter- and intramolecular G-quadruplex structures and found a significant selectivity of all the coronene derivatives for the intramolecular G-quadruplex. The efficiency in inhibiting human telomerase has been evaluated in a cell-free system and the experimental results correlate with the relative affinities of these compounds for the G-quadruplex monomeric structure, as derived by molecular modelling simulations. Thus, the coronene derivatives can be considered as a new class of telomerase inhibitors, although further investigations are surely necessary to fully exploit their features.  相似文献   

3.
Four N,N'-disubstituted perylene diimides, having different side chains, have been studied for their ability in inducing G-quadruplex DNA structures. We found that electrostatic interactions between ligands side chains and DNA grooves play a main role not only in the amount of G-quadruplex formed, but also in selecting its topology. Moreover, such compounds show also a different ability to inhibit telomerase. The correlation of these findings suggests the intriguing possibility that different G-quadruplex structures could differently inhibit the enzyme.  相似文献   

4.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step and that does not provide insight on the mechanism of inhibition. Furthermore, quadruplex ligands have also been shown to exert their effects by affecting association of telomere binding proteins with telomeres. Here, we use quantitative direct telomerase activity assays to evaluate the strength and mechanism of action of hydrosoluble perylene diimides (HPDIs). HPDIs contain a perylene moiety and different numbers of positively charged side chains. Side chain features vary with regard to number and distances of the charges. IC50 values of HPDIs were in the low micromolar (0.5–5 μM) range depending on the number and features of the side chains. HPDIs having four side chains emerged as the best compounds of this series. Analysis of primer elongation products demonstrated that at low HPDI concentrations, telomerase inhibition involved formation of telomeric G-quadruplex structures, which inhibited further elongation by telomerase. At high HPDI concentrations, telomerase inhibition occurred independently of G-quadruplex formation of the substrate. The mechanism of action of HPDIs and their specific binding to G-quadruplex DNA was supported by PAGE analysis, CD spectroscopy and ESI-MS. Finally, competition Telospot experiments with duplex DNA indicated specific binding of HPDIs to the single-stranded telomeric substrates over double stranded DNA, a result supported by competitive ESI-MS. Altogether, our results indicate that HPDIs act by stabilizing G-quadruplex structures in single-stranded telomeric DNA, which in turn prevents repeat addition processivity of telomerase.  相似文献   

5.
Three new perylene derivatives with branched ionizable side chains were synthesized, and their G-quadruplex binding specificities were compared by spectroscopic and electrophoretic analysis with two well-studied G-quadruplex ligands: PIPER and TmPyP4. The value of pH and consequent charge formation and self-aggregation of these perylene derivatives influences not only the type of G-quadruplex formation, but also the G-quadruplex binding selectivity.  相似文献   

6.
7.
The stabilisation of different G-quadruplex intra- and intermolecular structures by a number of perylene derivatives characterised by side chains ending with linear or cyclic amines was investigated by electrophoretic (EMSA) and spectroscopic (CD) techniques. The G-rich sequences included the biologically relevant human telomeric TTAGGG runs and the NHE region of the c-myc oncogene. The test compounds could be subdivided into two families: derivatives carrying a cyclic amine in the side chains, which show a reduced binding to the G-quadruplex form, and linear amine congeners, exhibiting enhanced affinity. The latter efficiently induce pairing of multiple DNA chains, while the former are not able to overcome the original folding of the nucleic acid sequence which is preserved in the complex. Remarkably, addition of the perylenes to G-rich sequences paired in a double helical form results in G-quadruplex induction by weak binders only. This is likely related to the ability of strong G-quadruplex binders, but not of weak G-quadruplex binders, to efficiently intercalate into the double-stranded arrangement, which becomes stabilised and is not prone to undergo denaturation and subsequent G-quadruplex folding essentially for kinetic reasons. Hence, two apparently conflicting requirements emerge from this work. In fact, linear alkylamino terminals in the perylene side chains are capable of strong and selective G-quadruplex recognition, but only cyclic amine end groups favour duplex-quadruplex transitions that are likely crucial to produce biological and pharmacological effects in living systems.  相似文献   

8.
Induction of parallel human telomeric G-quadruplex structures by Sr(2+)   总被引:1,自引:0,他引:1  
Human telomeric DNA forms G-quadruplex secondary structures, which can inhibit telomerase activity and are targets for anti-cancer drugs. Here we show that Sr(2+) can induce human telomeric DNA to form both inter- and intramolecular structures having characteristics consistent with G-quadruplexes. Unlike Na(+) or K(+), Sr(2+) facilitated intermolecular structure formation for oligonucleotides with 2 to 5 5'-d(TTAGGG)-3' repeats. Longer 5'-d(TTAGGG)-3' oligonucleotides formed exclusively intramolecular structures. Altering the 5'-d(TTAGGG)-3' to 5'-d(TTAGAG)-3' in the 1st, 3rd, or 4th repeats of 5'-d(TTAGGG)(4)-3' stabilized the formation of intermolecular structures. However, a more compact, intramolecular structure was still observed when the 2nd repeat was altered. Circular dichroism spectroscopy results suggest that the structures were parallel-stranded, distinguishing them from similar DNA sequences in Na(+) and K(+). This study shows that Sr(2+), promotes parallel-stranded, inter- and intramolecular G-quadruplexes that can serve as models to study DNA substrate recognition by telomerase.  相似文献   

9.
10.
Four new perylene derivatives with three and four basic side-chains are reported here as G-quadruplex interactive compounds. The new perylene derivatives are readily soluble in water and not self-aggregated, in contrast to what happens with the previously reported two side-chain perylene derivatives. All four compounds are able to induce the G-quadruplex and to inhibit 50% of telomerase activity at about 5 microM concentration, showing a similar efficiency with respect to each other. Molecular modelling studies are presented to try to explain these findings.  相似文献   

11.
A perylene ligand, N,N-bis-(1-aminopropyl-3-propylimidazol salt)-3,4,9,10-perylene tetracarboxylic acid diimide ligand (PDI), which consisted of π-conjugated perylene moiety and hydrophilic side chains with positively charged imidazole rings, was used to wrap G-quadruplex for fluorescence turn-on K(+) recognition. Electrostatic attraction between PDI's positively charged imidazole rings and DNA's negatively charged phosphate backbones enabled PDI to accumulate on DNA. Upon trapping K(+), these G-rich DNA sequences transitioned to G-quadruplex. Subsequently, PDI ligands wrapped G-quadruplex, in which the flat aromatic core of PDI ligand interacted with G-quartet through π-π stacking and the side chains were positioned in grooves through electrostatic interactions. Consequently, the interaction mode change and conformational transition from PDI stacked G-sequence to PDI wrapped G-quadruplex led to PDI fluorescence enhancement, which was readily monitored as the detection signal. This strategy excluded the sequence tagging step and exhibited high selectivity and sensitivity towards K(+) ion with the linear detection range of 10-150nM. Besides, PDI ligands may hold diagnostic and therapeutic application potentials to human telomere and cancer cells.  相似文献   

12.
Telomeric DNA can fold into four-stranded structures known as G-quadruplexes. Here we investigate the ability of G-quadruplex DNA to serve as a substrate for recombinant Tetrahymena and native Euplotes telomerase. Inter- and intramolecular G-quadruplexes were gel-purified and their stability examined using native gel electrophoresis, circular dichroism (CD) and thermal denaturation. While intermolecular G-quadruplexes were highly stable, they were excellent substrates for both ciliate telomerases in primer extension assays. In contrast, intramolecular G-quadruplexes formed in K+ exhibited biphasic unfolding and were not extended by ciliate telomerases. Na+-stabilised intramolecular G-quadruplexes were extended by telomerase owing to their rapid rate of dissociation. The Tetrahymena telomerase protein component bound to inter- but not intramolecular K+-stabilised G-quadruplexes. This study provides evidence that parallel intermolecular G-quadruplexes can serve as substrates for telomerase in vitro, their extension being mediated through direct interactions between this higher-order structure and telomerase.  相似文献   

13.
Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase   总被引:4,自引:0,他引:4  
Telomeric G-rich single-stranded DNA can adopt a G-tetraplex structure which has been shown to inhibit telomerase activity. We have examined benzoindoloquinolines derivatives for their ability to stabilize an intramolecular G-quadruplex. The increase in T(m) value of the G-quadruplex was associated with telomerase inhibition in vitro.  相似文献   

14.
15.
A recent approach in anticancer chemotherapy envisages telomerase as a potentially useful target. An attractive strategy deals with the development of compounds able to stabilize telomeric DNA in the G-quadruplex folded structure and, among them, a prominent position is found in the perylenes. With the aim to further investigate the role of drug structure, in view of possible pharmaceutical applications, we synthesized a series of compounds related to PIPER, a well-known perylene-based telomerase inhibitor. We modified the number of condensed aromatic rings and introduced different side chains to modulate drug protonation state and extent of self-aggregation. Effective telomerase inhibition was induced by heptacyclic analogues only, some showing a remarkably wide selectivity index with reference to inhibition of Taq polymerase. G-quadruplex stabilization was monitored by circular dichroism and melting experiments. Cell cytotoxicity measurements indicated a poor short-term cell killing ability for the best G-quartet binders. Besides the presence of a planar seven-condensed ring system, the introduction of a cyclic amine in the side chains critically affects the selectivity window.  相似文献   

16.
On the basis of growing evidence for G-quadruplex DNA structures in genomic DNA and the presumed need to resolve these structures for DNA replication, the G-quadruplex DNA unwinding ability of a prototypical replicative helicase, SV40 large T-antigen (T-ag), was investigated. Here, we demonstrate that this G-quadruplex helicase activity is robust and comparable to the duplex helicase activity of T-ag. Analysis of the SV40 genome demonstrates the presence of sequences that may form intramolecular G-quadruplexes, which are the presumed natural substrates for the G-quadruplex helicase activity of T-ag. A number of G-quadruplex-interactive agents as well as new perylene diimide (PDI) derivatives have been investigated as inhibitors of both the G-quadruplex and the duplex DNA helicase activities of T-ag. A unique subset of these G-quadruplex-interactive agents inhibits the G-quadruplex DNA unwinding activity of T-ag, relative to those reported to inhibit G-quadruplex DNA unwinding by RecQ-family helicases. We also find that certain PDIs are both potent and selective inhibitors of the G-quadruplex DNA helicase activity of T-ag. Surface plasmon resonance and fluorescence spectroscopic G-quadruplex DNA binding studies of these T-ag G-quadruplex helicase inhibitors have been carried out, demonstrating the importance of attributes in addition to binding affinity for G-quadruplex DNA that may be important for inhibition. The identification of potent and selective inhibitors of the G-quadruplex helicase activity of T-ag provides tools for probing the specific role of this activity in SV40 replication.  相似文献   

17.
It is well established that G-quadruplex DNA structures form at ciliate telomeres and their formation throughout the cell-cycle by telomere-end-binding proteins (TEBPs) has been analyzed. During replication telomeric G-quadruplex structure has to be resolved to allow telomere replication by telomerase. It was shown that both phosphorylation of TEBPβ and binding of telomerase are prerequisites for this process, but probably not sufficient to unfold G-quadruplex structure in timely manner to allow replication to proceed. Here we describe a RecQ-like helicase required for unfolding of G-quadruplex structures in vivo. This helicase is highly reminiscent of human RecQ protein-like 4 helicase as well as other RecQ-like helicase found in various eukaryotes and E. coli. In situ analyses combined with specific silencing of either the telomerase or the helicase by RNAi and co-immunoprecipitation experiments demonstrate that this helicase is associated with telomerase during replication and becomes recruited to telomeres by this enzyme. In vitro assays showed that a nuclear extract prepared from cells in S-phase containing both the telomerase as well as the helicase resolves telomeric G-quadruplex structure. This finding can be incorporated into a mechanistic model about the replication of telomeric G-quadruplex structures during the cell cycle.  相似文献   

18.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we have analyzed the selectivity of four ethidium derivatives and ethidium itself toward different G-quadruplex species, with electrospray mass spectrometry and competitive equilibrium dialysis and evaluated their inhibitory properties against telomerase. A selectivity profile may be obtained through electrospray ionization mass spectrometry (ESI-MS), which is in fair agreement with competitive equilibrium dialysis data. It also provides unambiguous data on the number of binding sites per nucleic acid (maximal number of two ethidium derivatives per quadruplex, in agreement with external stacking). Our experiments also demonstrate that one compound (4) is the most active and selective G-quadruplex ligand within this series and the most selective telomerase inhibitor in a modified TRAP-G4 assay.  相似文献   

19.
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.  相似文献   

20.
Formation of the G-quadruplex in the human telomeric sequence can inhibit the activity of telomerase, thus the intramolecular telomeric G-quadruplexes have been considered as an attractive anticancer target. Information of intramolecular telomeric G-quadruplex structures formed under physiological conditions is important for structure-based drug design. Here, we report the first structure of the major intramolecular G-quadruplex formed in a native, non-modified human telomeric sequence in K+ solution. This is a hybrid-type mixed parallel/antiparallel-G-stranded G-quadruplex, one end of which is covered by a novel T:A:T triple capping structure. This structure (Hybrid-2) and the previously reported Hybrid-1 structure differ in their loop arrangements, strand orientations and capping structures. The distinct capping structures appear to be crucial for the favored formation of the specific hybrid-type intramolecular telomeric G-quadruplexes, and may provide specific binding sites for drug targeting. Our study also shows that while the hybrid-type G-quadruplexes appear to be the major conformations in K+ solution, human telomeric sequences are always in equilibrium between Hybrid-1 and Hybrid-2 structures, which is largely determined by the 3-flanking sequence. Furthermore, both hybrid-type G-quadruplexes suggest a straightforward means for multimer formation with effective packing in the human telomeric sequence and provide important implications for drug targeting of G-quadruplexes in human telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号