首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
The photoreversible absorbance change of phytochrome in suspensionsof a 20,000xg particulate fraction (20kP) prepared from a 1,000xgsupernatant (1kS) of etiolated pea epicotyl extracts decreasedremarkably in the presence of 5 mM Cu2+, Zn2+ and Co2+, butremained unchanged in 5 mM Ca2+, Mg2+, Fe2+ or Mn2+. This spectraldistortion of phytochrome was more evident in soluble preparationsand in suspensions of pellets prepared from red light (R)-irradiatedtissues than it was in suspensions of pellets prepared in thedark from etiolated tissues that received no actinic irradiation. When Cu2+ was added to the red-light-absorbing form of phytochrome(Pr) in resuspended pellets prepared from R-irradiated tissues,the distortion of its difference spectrum took place after irradiationwith the first actinic R. In contrast, when Cu2+ was added tothe far-red-light-absorbing form of phytochrome (Pfr) in thesame resuspended pellet, no distortion was seen, unless thePfr in the pellet was first photoconverted to Pr and then photoconvertedback to Pfr. Spectral distortion of Pr remained small during dark incubationat 25°C when suspensions of 20kPs were prepared and incubatedwith a buffer containing EDTA, whether the 20kP was preparedfrom nonirradiated tissue or from R-irradiated tissues. But,when EDTA was added to a suspension of 20kP prepared from 1kS,after the 1kS was irradiated with R in the presence of 10 mMCaCl2, the spectral distortion of Pr in 20kP occurred instantaneously. (Received April 14, 1980; )  相似文献   

2.
Summary A brief irradiation with red light of pea (Pisum sativum L.) shoot segments kept at 0° resulted in very rapid binding of both Pr and Pfr to mitochondrial and microsomal fractions. The effect was not far-red reversible. The amount of phytochrome bound to the mitochondrial fraction was proportional to the percentage of Pfr of the fraction, and the ratio of Pr and Pfr in the bound form was the same as that in 12,000 x g supernatant. After a brief exposure of the segments to red light at 0° and a subsequent dark incubation at 30° in Tris-HCL buffer containing dithiothreitol or EDTA, which bot inhibit Pfr decay, the contents of phytochrome in the mitochondrial and microsomal fractions were significantly enhanced with time. The red-light effect was reversed by far-red light. The increase of the phytochrome content in the particulate fractions continued for at least 2 h, reaching a ca. 3 times higher level in terms of (A) per mg protein.Abbreviations R red - FR far-red - Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome  相似文献   

3.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):128-134
Phytochrome in the far-red light absorbing form (Pfr) was observed to disappear in vivo more rapidly from the non-cation-requiring pelletable phytochrome population than from the supernantant phytochrome population of oat seedlings given an increasing dark incubation after red irradiation. The amount of pelletable phytochrome in the red light absorbing form (Pr) remained relatively stable while supernatant Pr was lost. These observations indicated that supernant Pfr was subject to loss during the incubation, while pelletable Pfr was subject to both dark reversion and loss.During the incubation, the ability of far-red irradiation to reverse the red-induced increase in phytochrome pelletability was lost, with kinetics similar to those of the loss of pelletable Pfr.Far-red reversibility of the red-induced increase in coleoptile elongation correlated with the change intotal Pfr in both supernatant and pelletable phytochrome populations, but with the change in the ratio of Pfr to total phytochrome only in the pelletable phytochrome population.The possible significance of these results is discussed with reference to the action of phytochrome in the photocontrol of physiological growth responses.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the red absorbing form - Ptot total phytochrome  相似文献   

4.
N. Roth-Bejerano 《Planta》1980,149(3):252-256
The attachment of glycolate oxidase to the peroxisomal fraction derived from etiolated barley leaves (Hordeum vulgare L. cr. Dvir) is affected by light. The effect of red irradiation is reversed by subsequent far-red irradiation, indicating the involvement of phytochrome. This phytochrome effect is assumed to be related to phytochrome binding. Indeed, prevention by filipin (1.2·10-6 mol g-1 f wt) or cholesterol of phytochrome binding to membranes abolishes the effect of light on the interaction between glycolate oxidase and the peroxisomal fraction. Glycolate oxidase binding is affected by addition of quasi-ionophores such as gramicidin and filipin at a concentration of 0.6·10-3 mol g-1 f wt. This fact indicates that peroxisome-glycolate oxidase interaction may be affected by membrane potential. Since both ion transport and membrane potential are known to be affected by phytochrome, it is proposed that phytochrome acts in the light-induced modulation of glycolate oxidase attachment as a quasi-ionophore.Abbreviations GO glycolate oxidase - Pr and Pfr phytochrome forms absorbing in red and far-red, respectively - R and F red and far-red irradiation - Cumulative 20 Kp 20,000 g pellet obtained by centrifugation of the crude extract - 1 Kp 1,000 g pellet - 20 Kp 20,000 g pellet, obtained by centrifugation of 1 Kp supernatant - 1 Kp, 20 Kp and cumulative 20 Kp pellets obtained after density centrifugation through a sucrose cushion  相似文献   

5.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

6.
A set of rat monoclonal antibodies (ARC MAC 48 to 52 and 54 to 56), raised to phytochrome from dark-grown seedlings of Avena sativa L. was tested for the ability to discriminate between the red-absorbing (Pr) and far-red-absorbing (Pfr) forms of phytochrome by indirect enzyme-linked immunosorbent assay. MAC 50 bound more strongly to Pfr and MAC 49 and 52 showed preferential binding to Pr from extracts of dark-grown Avena seedlings; MAC 50 also bound more strongly to Pfr from brushite-purified phytochrome. The remainder of the monoclonal antibodies and a rabbit polyclonal antiphytochrome preparation did not discriminate between Pr and Pfr. The results provide evidence for conformational changes in defined regions of the phytochrome apoprotein upon photoconversion.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - McAb monoclonal antibody(ies) - PBS phosphate-buffered saline - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - PMSF phenylmethylsulphonylfluoride  相似文献   

7.
Roy W. Curtis 《Planta》1978,141(3):311-314
The active portion of the visible spectrum which is required for malformin to produce leaves which are resistant to dark abscission from cuttings of Phaseolus aureus is red light. Abscission resistance was partially to almost completely lost by far irradiation prior to dark incubation. Although Ethrel, an ethylene releasing compound, stimulated dark abscission of resistant and control leaves, resistance was not lost because control leaves always abscised at a greater rate. The participation of phytochrome in the induction of abscission resistance by malformin is indicated.Abbreviations Pfr far-red absorbing form of the phytochrome system - R red radiation - FR far-red radiation - D dark  相似文献   

8.
Manabe K 《Plant physiology》1975,56(6):772-775
In etiolated pea (Pisum sativum L. cv. Alaska) shoots about 3% of the total extractable phytochrome was found in the mitochondrial fraction and about 4.5% in the microsomal fraction, while over 70% was soluble in the 105,000g supernatant. The value of Δ(ΔA) per milligram of protein was significantly higher in the 105,000g supernatant than in these particulate fractions. The percentage conversion of Pr to Pfr was approximately proportional to the total dose of red light in every subcellular fraction tested, unless the dose approached a saturation level. After a brief irradiation of intact shoots with red light at 26 C, each subcellular fraction showed different patterns of dark transformation in vivo at 26 C; that is, the amount of the particulate-bound phytochrome increased immediately after the irradiation, and a reversion of Pfr to Pr was indicated for the first 2 hr in the 12,000g supernatant, but not at all in the mitochondrial and microsomal fractions. The amounts of Pr in the mitochondrial and microsomal fractions did not change during the dark incubation, while those in the 12,000g supernatant increased with time. Similar results were obtained with apical shoot segments after exposure to red light at 0 C and a subsequent dark incubation on moist filter paper at 26 C.  相似文献   

9.
Avena phytochrome A (phyA) overexpressed in tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon sculentum Mill) was functionally characterised by comparing wild-type (WT) and transgenic seedlings. Different proportions of phytochrome in its far-red-absorbing form (Pfr/P) were provided by end-of-day (EOD) light pulses. Stem-length responses occurred largely in the range of low Pfr/P (3–61%) for WT seedlings and in the range of high Pfr/P (61–87%) for transgenic seedlings. A similar shift was observed when the photoperiod was interrupted by short light pulses providing different Pfr/P ratios and followed by 1 h dark incubation. In other experiments, Avena phyA was allowed to re-accumulate in darkness and subsequently phototransformed to Pfr but no extra inhibition of stem extension growth was observed. In transgenic tomato seedlings the response to EOD far-red light was faster and the response to a far-red light pulse delayed into darkness was larger than in the WT. Avena phyA Pfr remaining at the end of the photoperiod appears intrinsically unable to sustain growth inhibition in subsequent darkness. Avena phyA modifies the sensitivity and the kinetics of EOD responses mediated by native phytochrome.Abbreviations EOD end-of-day - FR far-red light - Pfr/P pro-portion of phytochrome in its FR-absorbing form - phyA phyto-chrome A - phyB phytochrome B - R red light - RFR R to FR ratio - WT wild type We thank Dr Brian Thomas for providing the antibodies used in this work, and Federico Guerendiain for his excellent technical assistance. This work was financially supported by grants UBA AG 040 and Fundacion Antorchas A-12830/1-19 (both to J.J.C.), PID-CONICET (to R.A.S. and J.J.C.), United States Department of Energy DE-FG02-88ER13968 (to R.D.V.).  相似文献   

10.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

11.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

12.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

13.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

14.
Phytochrome of oat (Avena sativa L., cv. Garry) coleoptile cells in the red-light-absorbing form, Pr, is diffusely distributed while after conversion to the far-red-light-absorbing form, Pfr, it is observed only in very small areas within the cell. Comparison of phytochrome photoversibility measurements to the distribution of the pigment within the cell indicates that the spectral assay is not influenced by the observed compartmentalization of the chromoprotein. However, the observed compartmentalization of phytochrome is correlated with a loss in spectrophotometrically detectable Pr.Abbreviations Pr red-absorbing form of phytochrome - Pfr farred-absorbing form of phytochrome - R red light - FR far-red light C.I.W.-D.P.B. Publication No. 622  相似文献   

15.
M. G. Holmes  W. H. Klein 《Planta》1985,166(3):348-353
Observations made with primary leaves of Phaseolus vulgaris L. demonstrated that phytochrome modulates light-induced stomatal movement. Removal of the far-red-absorbing form of the pigment (Pfr) with far-red (FR) radiation decreased the time required by the stomata to reach maximal opening following a dark-to-light transition; this effect of FR was fully reversible with red. Removal of Pfr with FR also decreased the time required to reach maximal closure following a light-to-dark transition, and the rate of closure was dependent on the final irradiation treatment before darkness. No evidence was found for phytochrome involvement in determining stomatal aperture under constant conditions of either darkness of light.Abbreviations and symbols Chl chlorophyll - D darkness - FR far-red - phytochrome photostationary state - Pfr, Pr FR- and R-absorbing forms of phytochrome, respectively - R red  相似文献   

16.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

17.
M. T. Black  P. Lee  P. Horton 《Planta》1986,167(3):330-336
The kinetics of the intracellular redistribution of phytochrome (sequestering) in Avena sativa L. coleoptiles following a brief, saturating actinic pulse of red (R) light have been determined. Immunocytochemical labelling of phytochrome with monoclonal antibodies showed that at 22°C sequestering can occur within 1–2 s from the onset of R irradiation and is dependent upon the continued presence of the far-red-absorbing form of phytochrome (Pfr). The initial rate, but not the final extent, of sequestering is reduced by lowering the temperature of the tissue to 1°C. Sequestering at 22°C appears to involve two distinct stages: (1) a rapid association of Pfr with putative binding sites initiates the sequestered condition, following which (2) these sites of sequestered phytochrome appear to aggregate. Neither of these two processes was affected by the cytoskeletal inhibitors colchicine or cytochalasin B. Phytochrome sequestering therefore resembles R-light-induced phytochrome pelletability with respect to kinetics, temperature sensitivity, and dependence upon the continued presence of Pfr in the cell.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DIC differential interference contrast - FR far-red - Ig immunoglobulin - Pfr, Pr far-red-absorbing and red-absorbing form of phytochrome, respectively - R red  相似文献   

18.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

19.
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.Abbreviations FR far-red light - WL white light - PAR photosynthetically active radiation - Pfr far-red light absorbing form of phytochrome - Pr red light absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr) - Pfr/Pfr+Pr - SAN 9789 4-chloro-5-(methylamino) 2(,, trifluoro-m tolyl)-3(2H)-pyridazinone  相似文献   

20.
Protoplasts from dark-grown wheat (Triticum aestivum L.) maintained at a constant osmotic potential at 22°C, were found to swell upon red irradiation (R) and the effect was negated by subsequent far-red light (FR), indicating phytochrome involvement. Swelling only occurred when Ca2+ ions were present in the surrounding medium, or were added within 10 min after R. Furthermore, Mg2+, Ba2+ or K+ could not replace this requirement for Ca2+. The presence of K+ did not enhance the Ca2+-dependent swelling response. When the Ca2+-ionophore A 23187 was added to the medium, protoplasts swelled in the dark to the same extent as after R. Both the Ca2+-channelblocker Verapamil and La3+ inhibited R-induced swelling. It is proposed that R causes the opening of Ca2+-channels in the plasma membrane. Boyle-van't Hoff analyses of protoplast volume after R and FR are consistent with the conclusion that R irradiation causes changes in membrane properties.Abbreviations EDTA ethylenediaminetetraacetic acid - FR far-red light - nov non-osmotic-volume - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号