首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyclonal antibodies raised in rabbits to a mixture of sodium-dodecyl-sulphate-denatured C- and allo-phycocyanin, isolated from Anabaena cylindrica, cross-react with 124-kilodalton (kDa) phytochrome from etiolated oats, in enzyme-linked immunosorbent assays and on Western blots. The component(s) of the anti-phycocyanin serum that cross-reacts with phytochrome appears to be specific for the red-absorbing form of phytochrome (Pr). These antibodies can be detached from Pr by irradiation with red light, and thus show photoreversible binding. This property has been used to immunopurify the anti-phytochrome component from the antiserum using red light as the eluting agent. Competition assays and epitope-mapping studies indicate that the anti-phytochrome component may bind to a site located between 6 and 10 kDa from the amino-terminus of etiolated oat phytochrome.Abbreviations ELISA enzyme-linked immunosorbent assay - kDa kilodaton - FR far-red light - Pfr far-red-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - R red light - SDS sodium dodecyl sulphate  相似文献   

2.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

3.
Monoclonal antibodies to defined locations on six regions of the phytochrome molecule (from Avena sativa L. or Zea mays L.) were each found to have a different affinity toward the farred-absorbing form of phytochrome (Pfr) and the red-absorbing form (Pr). The differences were small, but were consistently shown by antibodies which bind to the vicinity of the aminoterminus, the carboxylterminus and to sequences in between. It seems that the conformational differences between Pr and Pfr extend over the whole molecule in as far as it is represented by these regions and the antibodies binding to them.Abbreviations Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome  相似文献   

4.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

5.
M. T. Black  P. Lee  P. Horton 《Planta》1986,167(3):330-336
The kinetics of the intracellular redistribution of phytochrome (sequestering) in Avena sativa L. coleoptiles following a brief, saturating actinic pulse of red (R) light have been determined. Immunocytochemical labelling of phytochrome with monoclonal antibodies showed that at 22°C sequestering can occur within 1–2 s from the onset of R irradiation and is dependent upon the continued presence of the far-red-absorbing form of phytochrome (Pfr). The initial rate, but not the final extent, of sequestering is reduced by lowering the temperature of the tissue to 1°C. Sequestering at 22°C appears to involve two distinct stages: (1) a rapid association of Pfr with putative binding sites initiates the sequestered condition, following which (2) these sites of sequestered phytochrome appear to aggregate. Neither of these two processes was affected by the cytoskeletal inhibitors colchicine or cytochalasin B. Phytochrome sequestering therefore resembles R-light-induced phytochrome pelletability with respect to kinetics, temperature sensitivity, and dependence upon the continued presence of Pfr in the cell.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DIC differential interference contrast - FR far-red - Ig immunoglobulin - Pfr, Pr far-red-absorbing and red-absorbing form of phytochrome, respectively - R red  相似文献   

6.
An enzyme-linked immunosorbent assay that revealed an antigenic difference between the red-absorbing and far-red-absorbing forms of phytochrome (Pr and Pfr, respectively) near its amino terminus (Cordonnier M-M, H Greppin, LH Pratt 1985 Biochemistry 24: 3246-3253) was used to screen eight additional monoclonal antibodies directed to phytochrome from etiolated oats. While six of these antibodies detected Pr and Pfr with equal affinity, two of them, designated Oat-9 and Oat-16, bound to Pfr 1.6 to 2.3 times better than to Pr. Competitive enzyme-linked immunosorbent assays indicate (a) that Oat-9 and Oat-16 probably bind to the same domain on phytochrome and (b) that this domain is at least 3.5 nanometers away from the epitope near its amino terminus that was shown earlier to change upon phototransformation. Neither the absorbance spectra of Pr and Pfr, nor the rate of dark reversion of Pfr to Pr, was influenced by the presence of Oat-9. Immunoblotting of sodium dodecyl sulfate polyacrylamide gels after electrophoretic separation of phytochrome fragments obtained by endogenous proteolytic digestion indicates that Oat-16 binds to an epitope located on the chromophore half of this chromoprotein. The observation that the epitope recognized by Oat-9 and Oat-16 is also present on at least some of the immunochemically distinct phytochrome that is obtained from green oat shoots (Shimazaki Y, LH Pratt 1985 Planta 164: 333-344), together with the evidence that this epitope undergoes a change upon photoransformation, indicates that it may play an important role in phytochrome function.  相似文献   

7.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

8.
The abundance and molecular mass of phytochrome in germinating embryos of A. sativa (oat) grown in light or darkness have been monitored using immunoblot and spectrophotometric assays. Immunoblot analysis shows that imbibed but quiescent embryos have two immunochemically distinct species of phytochrome with monomeric molecular masses of 124 and 118 kDa (kdalton). The 118-kDa species has the properties of the 118-kDa phytochrome extracted from fully green oat tissue (J.G. Tokuhisa, S.M. Daniels, P.H. Quail, 1985, Planta 164, 321–332), whereas the 124-kDa polypeptide appears similar to the well-characterized photoreceptor of etiolated tissue. The capacity of antibodies directed against etiolated-oat phytochrome to immunoprecipitate the 124-kDa species but not the 118-kDa species has been exploited to quantitate the levels of each separately over a 72-h time course of germination and seedling development. The abundance of the 124-kDa molecule increases at least 200-fold in etiolated seedlings over 72 h whereas in light-grown seedlings the level of this molecule is relatively constant. In contrast, the amount of the 118-kDa species increases only twofold in both dark- and light-grown seedlings over the same period of time. These data indicate that whereas the abundance of 124-kDa phytochrome is regulated at the protein level by the well-documented, differential stability of the red- and far-red-absorbing forms in vivo, the 118-kDa molecule is present at a low constitutive level, presumably reflecting no such difference in the stability of the two spectral forms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

9.
Characterisation of a new monoclonal antibody (mAb), designated LAS 41, directed against 124-kilodalton (kDa) etiolated-oat (Avena sativa L.) phytochrome, indicates that it recognises an epitope unique to the red-light-absorbing form, Pr. In a solid-phase enzyme-linked immunosorbent assay (ELISA), LAS 41 exhibits a seven- to eight-fold higher affinity for Pr than for the far-red-light-absorbing form of phytochrome, Pfr. In addition, in immunoprecipitation assays LAS 41 effectively precipitates 100% of phytochrome presented as Pr but only precipitates a maximum of 24.5% of phytochrome presented as Pfr. These values are indicative of binding exclusively to Pr. Peptide-mapping studies show that LAS 41 recognises and epitope located within a region 6–10 kDa from the aminoterminus of the phytochrome molecule. Since binding of LAS 41 to Pr induces alterations in the spectral properties of Pr, this indicates that at least part of the 4 kDa domain to which the antibody binds is essential for protein-chromophore interaction. Subsequent photoconversion of LAS 41-Pr complexes produces native Pfr spectra, with concomitant production of free antibody and antigen, as shown by a modified ELISA. The specificity of LAS 41 for Pr has facilitated the purification of Pfr which is free of contaminating Pr. This has enabled direct determination of the mole fraction of Pfr established by red light to be 0.874.Abbreviations ELISA enzyme-linked immunsorbent assay - kDa kilodalton - mAb monoclonal antibody - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - (A) difference in absorbance (A 665 Pr –A 730 Pr )-(A 665 Pfr –A 730 Pfr ) - Ar/Afr spectral change ratio (SCR) - max mole fraction of Pfr following saturating red light  相似文献   

10.
Y. Shimazaki  L. H. Pratt 《Planta》1985,164(3):333-344
While two monoclonal antibodies directed to phytochrome from etiolated oat (Avena sativa L.) shoots can precipitate up to about 30% of the photoreversible phytochrome isolated from green oat shoots, most precipitate little or none at all. These results are consistent with a report by J.G. Tokuhisa and P.H. Quail (1983, Plant Physiol. 72, Suppl., 85), according to which polyclonal rabbit antibodies directed to phytochrome from etiolated oat shoots bind only a small fraction of the phytochrome obtained from green oat shoots. The immunoprecipitation data reported here indicate that essentially all phytochrome isolated from green oat shoots is distinct from that obtained from etiolated oat shoots. The data indicate further that phytochrome from green oat shoots might itself be composed of two or more immunochemically distinct populations, each of which is distinct from phytochrome from etiolated shoots. Phytochrome isolated from light-grown, but norflurazon-bleached oat shoots is like that isolated from green oat shoots. When light-grown, green oat seedlings are kept in darkness for 48 h, however, much, if not all, of the phytochrome that reaccumulates is like that from etiolated oat shoots. Neither modification during purification from green oat shoots of phytochrome like that from etiolated oat shoots, nor non-specific interference by substances in extracts of green oat shoots, can explain the inability of antibodies to recognize phytochrome isolated from green oat shoots. Immunopurified polyclonal rabbit antibodies to phytochrome from etiolated pea (Pisum sativum L.). shoots precipitate more than 95% of the photoreversible phytochrome obtained from etiolated pea shoots, while no more than 75% of the pigment is precipitated when phytochrome is isolated from green pea shoots. These data indicate in preliminary fashion that an immunochemically unique pool of phytochrome might also be present in extracts of green pea shoots.Abbreviation ELISA enzyme-linked immunosorbent assay - mU milliunit - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome  相似文献   

11.
The cross-reactivity of diverse monoclonal antibodies against phytochrome from Zea and Avena was tested by enzyme-linked immunosorbentassay (ELISA) and by immunoblotting. About 40 antibodies were selected by means of nondenatured phytochrome; all of them reacted with sodium dodecyl sulfate denatured homologous antigen on immunoblots. The epitopes for 14 antibodies (4 raised against Avena and 10 against Zea phytochrome) were localized in 6 regions of the phytochrome molecule by means of Western blot analysis of proteolytic fragments of known localization. Results of studies on the inhibition of antibody binding by other antibodies were largely compatible with these latter findings. Except in a few cases, inhibition occurred when antibodies were located on the same or a closely adjacent region. As demonstrated by 16 species, cross-reactivity with phytochromes from other Poaceae was high. Greater losses in cross-reactivity were observed only with antibodies recognizing an epitope in the vicinity of the carboxyl terminus of 118-kg · mol-1 phytochrome. Cross-reactivity with phytochrome from dicotyledons was restricted to a few antibodies. However, phytochrome(s) from plants illuminated for 24 h or more could be detected. One of the antibodies that recognized phytochrome from dicotyledons was also found to recognize phytochrome or a protein of 120–125 kg·mol-1 from several ferns, a liverwort and mosses. This antibody (Z-3B1), which was localized within a 23.5-kg·mol-1 section of Avena phytochrome (Grimm et al., 1986, Z. Naturforsch. 41c, 993), seems to be the first antibody raised against phytochrome from a monocotyledon with such a wide range of reactivity. Even though epitopes were recognized on different phytochromes, the strength of antibody binding indicated that these epitopes are not necessarily wholly identical.Abbreviations ELISA enzyme-linked immunosorbent assay - McAb monoclonal antibody - PBS phosphate-buffered saline - Pfr (Pr) far-red-absorbing (red-absorbing) form of phytochrome - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

12.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

13.
Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development.  相似文献   

14.
Alan M. Jones  Peter H. Quail 《Planta》1989,178(2):147-156
We have undertaken a study of the structure of the amino-terminal domain of the phytochrome polypeptide purified from Avena sativa L. Amino-acid sequencing was used to indentify arginine 52 as the precise location of a conformation-specific cleavage of phytochrome by subtilisin. The location of the epitopes for a class of monoclonal antibodies designated type 2 has been shown to be located between approx. 10 and 20 kilodaltons (kDa) from the amino terminus. These two new spatial markers, in addition to the chromophore and another epitope recognized by type 1 monoclonal antibodies and located within 6 kDa from the amino terminus, have been used to map the locations of several new protease-accessible sites along the polypeptide. After extensive digestion of phytochrome with subtilisin, a stable spectrally-active group of peptides remains. Within this group is a 16-kDa chromopeptide which, either alone or as part of an assemblage of peptides, elutes from a size-exclusion column under nondenaturing conditions at a volume consistent with a molecular mass of 35–40 kDa. This group of peptides has an absorbance spectrum similar to the red-absorbing form of phytochrome (Pr) and is red/far-red photoreversible between this and a photobleached form. These data indicate that this group of peptides still retains the principal structural requisites for Pr-chromophore-protein interactions and for photoreversibility, but not for Pfr (far-red-absorbing phytochrome)-chromophore-protein interactions. It is uncertain if these structural requisites reside exclusively on the 16-kDa chromopeptide or result from an assemblage of these peptides. However, we have excluded any role for an adjacent 14-kDa fragment (approximately residues 50 to 200) in the observed spectral properties since it can be selectively removed without any effect on the photoreversibility.Abbreviations Da dalton - Mr relative molecular mass - Pr, Pfr red and far-red-absorbing forms of phytochrome, respectively - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis This work was presented, in part, at the XVI Yamada Conference on Phytochrome and Plant Photomorphogenesis, Okazaki, Japan, October 1986  相似文献   

15.
Phytochrome of oat (Avena sativa L., cv. Garry) coleoptile cells in the red-light-absorbing form, Pr, is diffusely distributed while after conversion to the far-red-light-absorbing form, Pfr, it is observed only in very small areas within the cell. Comparison of phytochrome photoversibility measurements to the distribution of the pigment within the cell indicates that the spectral assay is not influenced by the observed compartmentalization of the chromoprotein. However, the observed compartmentalization of phytochrome is correlated with a loss in spectrophotometrically detectable Pr.Abbreviations Pr red-absorbing form of phytochrome - Pfr farred-absorbing form of phytochrome - R red light - FR far-red light C.I.W.-D.P.B. Publication No. 622  相似文献   

16.
Overexpression of phytochrome A results in an increased inhibition of hypocotyl elongation under red and far-red light. We used this approach to assay for the function of N-terminal mutations of rice (Oryza sativa L.) phytochrome A. Transgenic tobacco seedlings that express the wild-type rice phytochrome A (RW), a rice phytochrome A lacking the first 80 amino acids (NTD) or a rice phytochrome A with a conversion of the first 10 serines into alanine residues (S/A) were compared with untransformed wild-type tobacco (Nicotiana tabacum L. cv. Xanthi) seedlings. Experiments under different fluence rates showed that RW and, even more strongly, S/A increased the response under both red and far-red light, whereas NTD decreased the response under far-red light but hardly altered the response under red light. These results indicate that NTD not only lacks residues essential for an increased response under red light but also distorts the wild-type response under far-red light. Wild-type rice phytochrome A and, even more so, S/A mediate an enhanced phytochrome A as well as phytochrome B function, whereas NTD interferes with the function of endogenous tobacco phytochrome A as well as that of rice phytochrome A when co-expressed in a single host. Experiments with seedlings of different ages and various times of irradiation under far-red light demonstrated that the effect of NTD is dependent on the stage of development. Our results suggest that the lack of the first 80 amino acids still allows a rice phytochrome A to interact with the phytochrome transduction pathway, albeit nonproductively in tobacco seedlings.Abbreviations HIR high-irradiance response - NTD N-terminal deletion mutant of rice phytochrome A - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - RW rice wild-type phytochrome A - S/A serine-to-alanine mu-tant of rice phytochrome A - wNTD weakly expressing NTD line - XAN wild-type tobacco cv. Xanthi We thank Masaki Furuya (Adv. Research Laboratory, Hitachi, Saitama, Japan) and Akira Nagatani (RIKEN Institute, Saitama, Japan) for providing the monoclonal antibodies mAP5 and mAR14. The work was supported by a grant from the Human Frontier Science Program. K.E. was a recipient of a Landesgraduiertenförderung fellowship.  相似文献   

17.
Summary A brief irradiation with red light of pea (Pisum sativum L.) shoot segments kept at 0° resulted in very rapid binding of both Pr and Pfr to mitochondrial and microsomal fractions. The effect was not far-red reversible. The amount of phytochrome bound to the mitochondrial fraction was proportional to the percentage of Pfr of the fraction, and the ratio of Pr and Pfr in the bound form was the same as that in 12,000 x g supernatant. After a brief exposure of the segments to red light at 0° and a subsequent dark incubation at 30° in Tris-HCL buffer containing dithiothreitol or EDTA, which bot inhibit Pfr decay, the contents of phytochrome in the mitochondrial and microsomal fractions were significantly enhanced with time. The red-light effect was reversed by far-red light. The increase of the phytochrome content in the particulate fractions continued for at least 2 h, reaching a ca. 3 times higher level in terms of (A) per mg protein.Abbreviations R red - FR far-red - Pr red-absorbing form of phytochrome - Pfr far-red-absorbing form of phytochrome  相似文献   

18.
Both the red-absorbing (Pr) and far red-absorbing (Pfr) forms of phytochrome undergo destruction, defined as the loss of photoreversibly detectable chromoprotein following actinic irradiation of dark-grown tissue, in 4-day-old etiolated oat seedlings. Pr and Pfr destruction follow the same time course, exhibit the same time delay after actinic irradiation when the plants are grown in sealed containers, result in a loss of antigenically detectable phytochrome, as determined by radial immunodiffusion assay, equal to the loss of spectrophotometrically detectable phytochrome, and have the same sensitivity to 2-mercaptoethanol and azide. We suggest that Pr destruction is a consequence of the same mechanism that is responsible for Pfr destruction.  相似文献   

19.
The characteristics of the high-irradiance response (HIR) of plant photomorphogenesis are thought to be the result of the interaction of both the light and dark reactions of phytochrome. Thus any variation in the rates of the dark reactions may be expected to lead to variation in the characteristics of the HIR. We report here substantial differences in the rates of the dark reactions between different seed batches of a single species (Sinapis alba L.), and also between different organs of seedlings from each of the batches of seed. Calculations of phytochrome dynamics from the measured dark-reaction rates show that the behaviour of Pfr under HIR conditions will vary considerably according to seed batch and seedling organ. Much larger differences in dark-reaction rates, and the resulting phytochrome dynamics, were found between 25° and 10° C. These lead to the prediction that the HIR will be much reduced at the lower temperature, and may be absent in some cases.Abbreviations and symbols HIR high-irradiance response - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - Ptot total phytochrome, Pr+Pfr - ss Pfr/Ptot ratio which immediately establishes the phytochrome steady state  相似文献   

20.
Proteolytic fragments were obtained by limited proteolysis of 124-kDa (kilodalton) phytochrome from etiolatedAvena sativa using trypsin, endoproteinase-Lys-C, endoproteinase-Glu-C and subtilisin. The fragments were separated by sodium dodecyl sulfate gel electrophoresis, blotted onto activated glass-fiber sheets and investigated by amino-acid sequencing in a gas-phase sequencer. Determination of N-terminal sequences in three to six Edman degradation steps allowed the exact localization of the fragments within the published entire amino-acid sequence of 124-kDaAvena phytochrome (H.P. Hershey, R.F. Barker, K.B. Idler, J.L. Lissemore, P.H. Quail (1985), Nucleic Acids Res.13, 8543–8559). From the knowledge of the exact sites for preferred proteolytic cleavage of undenatured phytochrome, conclusions on the conformation of the phytochrome protein were drawn. Sites of preferred cleavage are considered to be freely exposed to the environment whereas potential cleavage sites which are resistant to proteolysis over a long time are considered to be localized in the interior of the native phytochrome. Two different sites which are exposed in the far-red-absorbing form but not in the red-absorbing form of phytochrome are localized at amino-acid residues 354 and 753, respectively. The N-terminal region which is exposed only in the red-absorbing form stretches only as far as amino-acid residue 60.Abbreviations kDa kilodalton - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis Dedicated to Professor W. Rau on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号