首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used cassette and deletion mutagenesis to analyze the structural features of fragment B-related sequences in the fusion toxin DAB486-IL-2 (where IL-2 represents interleukin-2) that are necessary for the efficient delivery of fragment A to the cytosol of target cells. We demonstrate that whereas an intact disulfide bond between Cys461 and Cys471 may be required for the cytotoxic action of native diphtheria toxin, this bond is not required for the cytotoxic action of DAB486-IL-2. The in-frame deletion of the 97 amino acids from Thr387 to His485 of DAB486-IL-2 increases both the potency and the apparent dissociation constant (Kd) of the resulting fusion toxin for high affinity interleukin-2 receptor-bearing target cells. In contrast, the inframe deletion of either the 191 amino acids between Asp291 and Gly483 or the 85 amino acids between Asn204 and Ile290 results in a 1000-fold loss in potency. These regions contain the putative membrane-spanning regions and the amphipathic membrane surface-associating regions of fragment B, respectively. These results indicate that the efficient delivery of the ADP-ribosyltransferase from DAB486-IL-2 to the cytosol requires the membrane-associating domains of fragment B. This function has been postulated to play a role in the diphtherial intoxication of eukaryotic cells. However, unlike native diphtheria toxin, fragment B sequences distal to Thr387 do not enhance the potency of DAB486-IL-2.  相似文献   

2.
We have used site-directed insertion and point mutagenesis in an attempt to increase the cytotoxic potency and receptor-binding affinity of the diphtheria-toxin-related interleukin-2 (IL-2) fusion toxins. Previous studies have demonstrated that both the DAB486-IL-2 and DAB389-IL-2 forms of the fusion toxin consist of three functional domains: the N-terminal fragment-A-associated ADP-ribosyltransferase, the hydrophobic-membrane-associating domains, and the C-terminal receptor-binding domain of human IL-2. By insertion mutagenesis we have increased the apparent flexibility of the polypeptide chain between the membrane-associating domains and the receptor-binding domain of this fusion toxin. In comparison to DAB486-IL-2, the cytotoxic potency of the insertion mutants was increased by approximately 17-fold for high-affinity IL-2-receptor-bearing cell lines in vitro. Moreover, competitive displacement experiments using [125I]rIL-2 demonstrate that the increase in cytotoxic potency correlates with an increase in receptor-binding affinity for both the high and intermediate forms of the IL-2 receptor.  相似文献   

3.
During the proliferative burst after Ag recognition, T cells express cell-surface, high-affinity IL-2R. The importance of IL-2R+ T cells in supporting/mediating tissue injury has been documented by the ability of mAb anti-IL2R therapies to prevent allograft rejection and autoimmunity. The delayed-type hypersensitivity (DTH) response, an experimental model of T-dependent immunity, offers the possibility of studying responses mounted against defined Ag. We previously reported that the chimeric IL-2 toxin (DAB486-IL-2) prevents DTH responses and selectively eliminates activated IL-2R bearing CD4 and CD8 T cells from lymph nodes draining the site of inflammation. We have examined the duration of immunosuppression and relative specificity of action of DAB486-IL-2 and anti-CD3 mAb for Ag-activated clones in a murine model of DTH using two different noncross-reacting haptens. Treatment with DAB486-IL-2 generates a state of selective unresponsiveness to subsequent challenge with the hapten introduced during the therapeutic period. Immediately after cessation of DAB486-IL-2 therapy, immunization with an unrelated hapten induces a normal vigorous immune response. By comparison, anti-CD3 mAb treatment causes a broad immunosuppression because unrelated haptens introduced after anti-CD3 therapy do not evoke a vigorous immune response. After cessation of DAB486-IL-2 toxin treatment response to the hapten is eventually restored probably by cells trafficking from the thymus, because thymectomized hosts remain unresponsive to the hapten. Taken together these data reinforce the role of the IL-2R as an important target for immunosuppression in T cell-mediated immune reactions. DAB-486-IL-2 treatment confers highly selective immunosuppression.  相似文献   

4.
Elevated expression of the receptor for epidermal growth factor (EGF) is a characteristic of several malignancies including those of the breast, bladder, prostate, lung, and neuroglia. To therapeutically target the cytotoxic action of diphtheria toxin to EGF receptor-expressing tumor cells, we have constructed a hybrid gene in which the sequences for the binding domain of diphtheria toxin have been replaced by those for human EGF. The resulting fusion toxins, DAB486EGF and DAB389EGF, bind specifically to the EGF receptor and inhibit protein synthesis in a variety of EGF receptor expressing human tumor cell lines with an IC50 as low as 0.1 pM. Comparisons of DAB486EGF and DAB389EGF showed that DAB389EGF was consistently 10- to 100-fold more cytotoxic than DAB486EGF. Like diphtheria toxin, the cytotoxic action of DAB389EGF results from ADP-ribosylation of elongation factor-2 and is sensitive to the action of chloroquine. Studies of the kinetics of cellular intoxication showed that a 15-min exposure of EGF receptor-expressing A431 cells to DAB389EGF results in complete protein synthesis inhibition within 4 h. Furthermore, inhibition of protein synthesis results in elimination of human tumor cell colonies. These findings show that DAB389EGF is a potential therapeutic agent for a wide variety of EGF receptor-expressing solid tumors.  相似文献   

5.
DAB389-mIL-4 is a murine interleukin-4 (mIL-4) diphtheria toxin-related fusion protein which has been shown to be selectively toxic to cells expressing the mIL-4 receptor. In this report, we have used site-directed and in-frame deletion mutagenesis to study the role of the putative C-terminal alpha-helix (helix E) of the mIL-4 component of DAB389-mIL-4 in the intoxication process. We demonstrate that deletion of the C-terminal 15 amino acids of the fusion toxin leads to loss of cytotoxicity. The substitution of Phe496 with either Pro, Ala or Tyr, results in a greater than 20-fold decrease in cytotoxic activity of the respective mutant fusion toxins. In addition, substitution of Leu497 with either Ala or Glu results in a similar loss of cytotoxic activity. All of these mutant forms of the mIL-4 fusion toxin demonstrate a significant decrease in binding affinity (Ki) to the mIL-4 receptor in a competitive radioligand binding assay. In marked contrast, however, the substitution of Asp495 with Asn results in a 4-fold increase in cytotoxic potency and binding affinity to mIL-4 receptor bearing cells in vitro.  相似文献   

6.
The region including the conserved Ser65-Asp66 dipeptide in the tetracycline/H+ antiporter (TET) encoded by transposon Tn10 is thought to play a gating role (Yamaguchi, A., Ono, N., Akasaka, T., Noumi, T., and Sawai, T. (1990) J. Biol. Chem. 265, 15525-15530). The dipeptide is in putative interhelix loop2-3, which also includes the conserved sequence motif, GXXXXRXGRR, found in all TET proteins and sugar/H+ symporters. Through the combination of localized random and site-directed mutagenesis, each residue in loop2-3 was replaced. Among 10 residues in putative loop2-3, the important residues, of which substitution resulted in significant reduction or complete loss of the transport activity, were Gly62, Asp66, Gly69, and Arg70. The defect in the transport activity of the Gly62 and Gly69 substitution mutants corresponded to the steric hindrance by the substituents as to the putative beta-turn structure of the peptide backbone containing these glycines. Of 3 conserved Arg residues, the replacement of only Arg70 caused complete loss of the activity except for replacement with Lys, indicating the importance of a positive charge at this position, which is similar to the essentiality of a negative charge at Asp66. A "charge-neutralizing" intra-loop salt bridge between Asp66 and Arg70 was not likely because the double mutant in which Asp66 and Arg70 were replaced with asparagine and leucine, respectively, showed no transport activity. A triple mutant with only one positive charge at Arg70 in this loop showed about half the wild-type activity, indicating that the polycationic nature of the loop was not critical for the activity. Cys mutants as to the unessential residues in the loop were modifiable with N-ethylmaleimide, except for the Met64----Cys and Arg71----Cys mutants; however, the modification of only the Ser65----Cys mutant caused significant inhibition of the transport activity, indicating that position 65 is a unique position in the structure of loop2-3.  相似文献   

7.
We have used protein engineering and recombinant DNA methodologies in order to construct a fusion protein in which human interleukin-2 (IL-2) is genetically linked to the catalytic and transmembrane domains of diphtheria toxin. The fusion toxin, DAB486IL-2, is highly cytotoxic for only those cells which display the high affinity interleukin-2 receptor (IL-2R) on their surface. In phase I/II clinical studies the intravenous administration of DAB486IL-2 has been found to be safe, well tolerated and may lead to the induction of durable remissions in patients presenting with a variety of IL-2R positive lymphomas.  相似文献   

8.
Cytochrome P450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme that exhibits a marked genetic polymorphism. Numerous CYP2D6 alleles have been characterized at a functional level, although the consequences for expression and/or catalytic activity of a substantial number of rare variants remain to be investigated. One such allele, CYP2D6*31, is characterized by mutations encoding three amino acid substitutions: Arg296Cys, Arg440His and Ser486Thr. The identification of this allele in an individual with an apparent in vivo poor metabolizer phenotype prompted us to analyze the functional consequence of these substitutions on enzyme activity using yeast as a heterologous expression system. We demonstrated that the Arg440His substitution, alone or in combination with Arg296Cys and/or Ser486Thr, altered the respective kinetic parameters [Km (microM) and kcat (min(-1))] of debrisoquine 4-hydroxylation (wild-type, 25; 0.92; variants, 43-68; 0.05-0.11) and dextromethorphan O-demethylation (wild-type, 1; 4.72; variants, 12-23; 0.64-1.43), such that their specificity constants (kcat/Km) were decreased by more than 95% compared to those observed with the wild-type enzyme. The rates of oxidation of rac-metoprolol at single substrate concentrations of 40 and 400 microM were also markedly decreased by approximately 90% with each CYP2D6 variant containing the Arg440His substitution. These in vitro data confirm that the CYP2D6*31 allele encodes an enzyme with a severely impaired but residual catalytic activity and, furthermore, that the Arg440His exchange alone is the inactivating mutation. A homology model of CYP2D6 based on the crystal structure of rabbit CYP2C5 locates Arg440 on the proximal surface of the protein. Docking the structure of the FMN domain of human cytochrome P450 reductase to the CYP2D6 model suggests that Arg440 is a key member of a cluster of basic amino acid residues important for reductase binding.  相似文献   

9.
禽IL-2与传染性法氏囊VP2融合蛋白免疫学特性   总被引:3,自引:0,他引:3  
为研究禽细胞因子IL-2与IBDV主要保护性抗原VP2基因融合蛋白的免疫学特性,将重组的rVP2-IL-2融合蛋白免疫鸡,通过IBDV-VP2 ELISA抗体效价、抗体亚型(IgG1和IgG2a)、淋巴细胞增殖、INF-γ和IL-4细胞因子的分泌水平、中和抗体以及动物攻毒试验检测评价其对鸡体免疫水平的影响。抗体滴度测定和淋巴细胞增殖试验结果显示,rVP2-IL-2融合蛋白免疫鸡体的体液和细胞免疫应答水平均明显高于单独的VP2蛋白免疫组。抗体亚型测定结果显示,rVP2-IL-2融合蛋白免疫组鸡体能产生一个平衡的IgG1和IgG2a抗体反应。细胞因子ELISA试验结果表明rVP2-IL-2融合蛋白能有效平衡Th1(γ-IFN)和Th2(IL-4)类型的细胞免疫反应。动物攻毒试验rVp2-IL-2融合蛋白免疫组鸡体获得了85%的保护率,表明构建的rVP2-IL-2融合蛋白对IBDV的攻击具有较好的免疫保护作用。本研究为进一步研制IBD高效的基因工程疫苗奠定了基础。  相似文献   

10.
Twenty-one polymorphic sequence variants of the RYR1 gene, including 13 restriction fragment length polymorphisms (RFLPs), were identified by sequence analysis of human ryanodine receptor (RYR1) cDNAs from three individuals predisposed to malignant hyperthermia (MH). All RFLPs were detectable in PCR-amplified products, and their segregation was consistent with our initial finding of linkage to MH in the nine families previously informative for one or more intragenic markers (MacLennan et al., 1990, Nature 343:559-561). Four amino acid substitutions were identified in the study: Arg for Gly248, Cys for Arg470, Leu for Pro1785, and Cys for Gly2059. Of 45 families tested, a single family presented the Arg for Gly248 substitution where it segregated with malignant hyperthermia, making it a candidate mutation for predisposition to MH in man. The other three polymorphic substitutions failed to segregate with malignant hyperthermia in those families in which they occurred, implying that they represent polymorphisms with little or no effect on the function of the RYR1 gene.  相似文献   

11.
Brokx SJ  Talbot J  Georges F  Waygood EB 《Biochemistry》2000,39(13):3624-3635
Enzyme I mutants of the Salmonella typhimurium phosphoenolpyruvate:sugar phosphotransferase system (PTS), which show in vitro intragenic complementation, have been identified as Arg126Cys (strain SB1690 ptsI34), Gly356Ser (strain SB1681 ptsI16), and Arg375Cys (strain SB1476 ptsI17). The mutation Arg126Cys is in the N-terminal HPr-binding domain, and complements Gly356Ser and Arg375Cys enzyme I mutations located in the C-terminal phosphoenolpyruvate(PEP)-binding domain. Complementation results in the formation of unstable heterodimers. None of the mutations alters the K(m) for HPr, which is phosphorylated by enzyme I. Arg126 is a conserved residue; the Arg126Cys mutation gives a V(max) of 0.04% wild-type, establishing a role in phosphoryl transfer. The Gly356Ser and Arg375Cys mutations reduce enzyme I V(max) to 4 and 2%, respectively, and for both, the PEP K(m) is increased from 0.1 to 3 mM. It is concluded that this activity was from the monomer, rather than the dimer normally found in assays of wild-type. In the presence of Arg126Cys enzyme, V(max) for Gly356Ser and Arg375Cys enzymes I increased 6- and 2-fold, respectively; the K(m) for PEP decreased to <10 microM, but the K(m) became dependent upon the stability of the heterodimer in the assay. Gly356 is conserved in enzyme I and pyruvate phosphate dikinase, which is a homologue of enzyme I, and this residue is part of a conserved sequence in the subunit interaction site. Gly356Ser mutation impairs enzyme I dimerization. The mutation Arg375Cys also impairs dimerization, but the equivalent residue in pyruvate phosphate dikinase is not associated with the subunit interaction site. A 37 000 Da, C-terminal domain of enzyme I has been expressed and purified; it dimerizes and complements Gly356Ser and Arg375Cys enzymes I proving that the association/dissociation properties of enzyme I are a function of the C-terminal domain.  相似文献   

12.
ABSTRACT: BACKGROUND: Oculocutaneous albinism (OCA) is caused by a group of genetically heterogeneous inherited defects that result in the loss of pigmentation in the eyes, skin and hair. Mutations in the TYR, OCA2, TYRP1 and SLC45A2 genes have been shown to cause isolated OCA. No comprehensive analysis has been conducted to study the spectrum of OCA alleles prevailing in Pakistani albino populations. METHODS: We enrolled 40 large Pakistani families and screened them for OCA genes and a candidate gene, SLC24A5. Protein function effects were evaluated using in silico prediction algorithms and ex vivo studies in human melanocytes. The effects of splice-site mutations were determined using an exon-trapping assay. RESULTS: Screening of the TYR gene revealed four known (p.Arg299His, p.Pro406Leu, p.Gly419Arg, p.Arg278*) and three novel mutations (p.Pro21Leu, p.Cys35Arg, p.Tyr411His) in ten families. Ex vivo studies revealed the retention of an EGFP-tagged mutant (p.Pro21Leu, p.Cys35Arg or p.Tyr411His) tyrosinase in the endoplasmic reticulum (ER) at 37degreesC, but a significant fraction of p.Cys35Arg and p.Tyr411His left the ER in cells grown at a permissive temperature (31degreesC). Three novel (p.Asp486Tyr, p.Leu527Arg, c.1045-15T>G) and two known mutations (p.Pro743Leu, p.Ala787Thr) of OCA2 were found in fourteen families. Exon-trapping assays with a construct containing a novel c.1045-15T>G mutation revealed an error in splicing. No mutation in TYRP1, SLC45A2, and SLC24A5 was found in the remaining 16 families. Clinical evaluation of the families segregating either TYR or OCA2 mutations showed nystagmus, photophobia, and loss of pigmentation in the skin or hair follicles. Most of the affected individuals had grayish-blue colored eyes. CONCLUSIONS: Our results show that ten and fourteen families harbored mutations in the TYR and OCA2 genes, respectively. Our findings, along with the results of previous studies, indicate that the p.Cys35Arg, p.Arg278* and p.Gly419Arg alleles of TYR and the p.Asp486Tyr and c.1045-15T>G alleles of OCA2 are the most common causes of OCA in Pakistani families. To the best of our knowledge, this study represents the first documentation of OCA2 alleles in the Pakistani population. A significant proportion of our cohort did not have mutations in known OCA genes. Overall, our study contributes to the development of genetic testing protocols and genetic counseling for OCA in Pakistani families.  相似文献   

13.
We have previously reported the genetic construction and properties of a fusion protein which was composed of the enzymatically active and membrane translocation domains of the diphtheria toxin and the receptor-specific ligand alpha-melanocyte-stimulating hormone (alpha-MSH) (Murphy, J.R., Bishai, W., Borowski, M., Miyanohara, A., Boyd, J., and Nagle, S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8258-8262). While this fusion toxin was found to be selectively toxic for MSH receptor-bearing cells in vitro, it was subject to profound proteolytic degradation in recombinant Escherichia coli making purification difficult. We now report that the deletion of diphtheria toxin fragment B sequences between Thr387 and His485 results in a protease-resistant form of the fusion toxin, DAB389-alpha-MSH. We show that DAB389-alpha-MSH is expressed in high yield in recombinant Escherichia coli, that it is readily purified from crude bacterial lysates by immunoaffinity and high performance liquid chromatography, and its cytotoxic activity toward both human and murine malignant melanoma cell lines is mediated through the MSH receptor.  相似文献   

14.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

15.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

16.
HepG2 cells, a human hepatoma cell line, stably expressing NADPH-cytochrome P450 reductase (OR) and/or cytochrome P450 2D6 wild-type (CYP2D6-WT) or its variants (Pro34Ser, Gly42Arg, Arg296Cys and Ser486Thr) were established in the present study. The cultivation of HepG2 cells expressing CYP2D6-WT in the culture medium containing dimethyl sulfoxide (DMSO, 0.1% of final concentration) markedly increased the bufuralol (BF) 1'-hydroxylase activity compared with that of control cells when cultivated without DMSO. A similar effect was also observed in HepG2 cells stably expressing CYP2D6 and OR. The addition of hemin in place of DMSO to the culture medium resulted in no increase in the enzyme activity. Western blot analysis revealed that the levels of CYP2D6 protein were similar between DMSO-treated and non-treated HepG2 cells regardless of OR expression. Spectrophotometric analysis of reduced carbon monoxide-difference spectra of HepG2 cells expressing CYP2D6-WT and/or OR demonstrated that the addition of DMSO increased the peak height of functional CYP2D6 at 450 nm. These results suggest that the increase in CYP2D6 activity is attributable to the radical-scavenging effect of DMSO. The HepG2 cell lines stably expressing OR and CYP2D6 or its variants in combination with DMSO treatment may be useful for screening the cytotoxicity of chemical compounds which undergo oxidation by CYP2D6.  相似文献   

17.
Two analogs of human beta-endorphin (beta-EP) which contain cystine bridges, [Cys15-Cys26,Phe27,Gly31]-beta-EP (I) and [Cys16-Cys26,Phe27,Gly31]-beta-EP (II), were synthesized by the solid-phase method. Peptides I and II were shown to contain 2-2.5 times the opiate receptor binding activity of beta-endorphin. We also synthesized two analogs with reduced alkylated cysteine residues and these peptides, [Arg9,19,24,28,29 Cys(Cam)11,26,Phe27,Gly31] and [Arg9,19,24,28,29,Cys-(Cam)12,26,Phe27,Gly31], were shown to have approximately the same opiate receptor activity as beta-endorphin.  相似文献   

18.
Structural studies of receptor binding by cholera toxin mutants.   总被引:1,自引:0,他引:1       下载免费PDF全文
The wide range of receptor binding affinities reported to result from mutations at residue Gly 33 of the cholera toxin B-pentamer (CTB) has been most puzzling. For instance, introduction of an aspartate at this position abolishes receptor binding, whereas substitution by arginine retains receptor affinity despite the larger side chain. We now report the structure determination and 2.3-A refinement of the CTB mutant Gly 33-->Arg complexed with the GM1 oligosaccharide, as well as the 2.2-A refinement of a Gly 33-->Asp mutant of the closely related Escherichia coli heat-labile enterotoxin B-pentamer (LTB). Two of the five receptor binding sites in the Gly 33-->Arg CTB mutant are occupied by bound GM1 oligosaccharide; two other sites are involved in a reciprocal toxin:toxin interaction; one site is unoccupied. We further report a higher resolution (2.0 A) determination and refinement of the wild-type CTB:GM1 oligosaccharide complex in which all five oligosaccharides are seen to be bound in essentially identical conformations. Saccharide conformation and binding interactions are very similar in both the CTB wild-type and Gly 33-->Arg mutant complexes. The protein conformation observed for the binding-deficient Gly 33-->Asp mutant of LTB does not differ substantially from that seen in the toxin:saccharide complexes. The critical nature of the side chain of residue 33 is apparently due to a limited range of subtle rearrangements available to both the toxin and the saccharide to accommodate receptor binding. The intermolecular interactions seen in the CTB (Gly 33-->Arg) complex with oligosaccharide suggest that the affinity of this mutant for the receptor is close to the self-affinity corresponding to the toxin:toxin binding interaction that has now been observed in crystal structures of three CTB mutants.  相似文献   

19.
Ma H  Lewis D  Xu C  Inesi G  Toyoshima C 《Biochemistry》2005,44(22):8090-8100
Twenty five amino acids within the "N", "P", and "A" domains of the Ca(2+) ATPase (SERCA1) headpiece were subjected to site directed mutagenesis, taking advantage of a high yield expression system. Functional and conformational effects of mutations were interpreted systematically in the light of the high resolution WT structure, defining direct involvement in catalysis as well as in stabilization of various positions acquired by each domain upon substrate binding and utilization. Amino acids involved in binding of ATP (such as Phe487 and Arg560 in the N domain) or phosphate (such as Asp351, Thr625, Lys684, and Thr353 in the P domain) were characterized with respect to their binding mechanism. Further identified were "positional" roles of several amino acids that stabilize neighboring residues for optimal binding of substrate or Mg(2+), or interface between headpiece domains as they change their relative positions in the course of the catalytic cycle. These include cross-linking of the "N" and "P" domains (e.g., Arg560/Asp627 salt bridge to stabilize domain approximation by ATP binding), and stabilization of the "A", "N", and activated "P" domains in arrangements differing from the ground E2 state and driven by catalytic events. This stabilization is produced through hydrogen bonds at domain interfaces, which vary depending on the intermediate state (e.g., Glu486/T171 in E1P and E2P, as opposed to Glu486/H190 in E2). We demonstrate that specific arrangements of the headpiece domains shown in crystal structures are, in fact, required to trigger displacement of transmembrane segments during the enzyme cycle in solution, allowing long range linkage of catalytic and Ca(2+) binding functions.  相似文献   

20.
《Genomics》2020,112(1):552-566
Heat shock protein 47 kDa (HSP47) serves as a client-specific chaperone, essential for collagen biosynthesis and its folding and structural assembly. To date, there is no comprehensive study on mutational hotspots. Using five different human mutational databases, we deduced a comprehensive list of human HSP47 mutations with 24, 67, 50, 43 and 2 deleterious mutations from the 1000 genomes data, gnomAD, COSMICv86, cBioPortal, and CanVar, respectively. We identified thirteen top-ranked missense mutations of HSP47 with the stringent cut-off of CADD score (>25) and Grantham score (≥151) as Ser76Trp, Arg103Cys, Arg116Cys, Ser159Phe, Arg167Cys, Arg280Cys, Trp293Cys, Gly323Trp, Arg339Cys, Arg373Cys, Arg377Cys, Ser399Phe, and Arg405Cys with the arginine-cysteine changes as the predominant mutations. These findings will assist in the evaluation of roles of HSP47 in collagen misfolding and human diseases such as cancer and bone disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号