首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Alzheimer's disease is characterised by the accumulation of amyloid-beta peptide, which is cleaved from the copper-binding amyloid-beta precursor protein. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for amyloid-beta precursor protein and amyloid-beta in copper homeostasis. Amyloid-beta precursor protein is a member of a multigene family, including amyloid precursor-like proteins-1 and -2. The copper-binding domain is similar among amyloid-beta precursor protein family members, suggesting an overall conservation in its function or activity. Here, we demonstrate that double knockout of amyloid-beta precursor protein and amyloid precursor-like protein-2 expression results in significant increases in copper accumulation in mouse primary cortical neurons and embryonic fibroblasts. In contrast, over-expression of amyloid-beta precursor protein in transgenic mice results in significantly reduced copper levels in primary cortical neurons. These findings provide cellular neuronal evidence for the role of amyloid-beta precursor protein in copper homeostasis and support the existing hypothesis that amyloid-beta precursor protein and amyloid precursor-like protein-2 are copper-binding proteins with functionally interchangeable roles in copper homeostasis.  相似文献   

3.
Neurodegenerative illnesses are characterized by aberrant metabolism of biometals such as copper (Cu), zinc (Zn) and iron (Fe). However, little is known about the metabolic effects associated with altered metal homeostasis. In this study, we used an in vitro model of altered Cu homeostasis to investigate how Cu regulates cellular protein expression. Human fibroblasts containing a natural deletion mutation of the Menkes (MNK) ATP7A Cu transporter (MNK deleted) were compared to fibroblasts overexpressing ATP7A (MNK transfected). Cultures of MNK-transfected (Low-Cu) cells exhibited 95% less intracellular Cu than MNK-deleted (High-Cu) cells. Comparative proteomic analysis of the two cell-lines was performed using antibody microarrays, and significant differential protein expression was observed between Low-Cu and High-Cu cell-lines. Western blot analysis confirmed the altered protein expression of Ku80, nexilin, L-caldesmon, MAP4, Inhibitor 2 and DNA topoisomerase I. The top 50 altered proteins were analysed using the software program Pathway Studio (Ariadne Genomics) and revealed a significant over-representation of proteins involved in DNA repair and maintenance. Further analysis confirmed that expression of the DNA repair protein Ku80 was dependent on cellular Cu homeostasis and that Low-Cu levels in fibroblasts resulted in elevated susceptibility to DNA oxidation.  相似文献   

4.
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.  相似文献   

5.
Down syndrome (DS) is the most common genetic disorder with mental retardation and is caused by trisomy 21. By the age of 40 years, virtually all adults with DS have sufficient neuropathology for a diagnosis of Alzheimer's disease (AD), which is characterized by accumulation of amyloid-beta in senile plaques and formation of neurofibrillary tangles. Amyloid-beta derives from a longer precursor protein, APP, whose gene maps to chromosome 21. In DS, the early appearance of senile plaques is commonly associated with the presence of a third copy of the APP gene. Here we show DS brains and trisomic fibroblasts in which APP is not overexpressed, compared to euploid controls, challenging the notion that the widespread amyloid-beta deposits, consistently found in DS individuals, result from an extra copy of APP.  相似文献   

6.
PURPOSE OF REVIEW: Recent evidence suggests that cholesterol metabolism participates in the pathogenesis of Alzheimer's disease. Apolipoprotein E is the main lipid carrier in the brain and the best-established risk factor for late-onset Alzheimer's disease. Intracellular cholesterol levels influence the generation of amyloid-beta peptides, the toxic species thought to be a primary cause of Alzheimer's disease. Finally, compounds that modulate cholesterol metabolism affect amyloid-beta generation. This review summarizes data linking apolipoprotein E and adenosine triphosphate-binding cassette transporters to aspects of cholesterol metabolism and Alzheimer's disease pathogenesis. RECENT FINDINGS: In vivo, the lipidation status of apolipoprotein E affects amyloid-beta burden in mice with Alzheimer's disease, which appears to caused by the modulation of amyloid-beta deposition or clearance rather than amyloid-beta production. State-of-the-art in-vivo assays reveal that amyloid-beta is cleared from the brain by multiple pathways. Members of the adenosine triphosphate-binding cassette superfamily of transporters regulate lipid homeostasis and apolipoprotein metabolism in the brain, and may affect Alzheimer's disease pathogenesis by modulating apolipoprotein E lipidation as well as intracellular sterol homeostasis. SUMMARY: Proteins involved in brain cholesterol metabolism may affect the pathogenesis of Alzheimer's disease. Compounds that modulate the expression of these proteins may be of therapeutic benefit in Alzheimer's disease.  相似文献   

7.
Lipids play an important role as risk or protective factors in Alzheimer's disease, which is characterized by amyloid plaques composed of aggregated amyloid-beta. Plasmalogens are major brain lipids and controversially discussed to be altered in Alzheimer's disease (AD) and whether changes in plasmalogens are cause or consequence of AD pathology. Here, we reveal a new physiological function of the amyloid precursor protein (APP) in plasmalogen metabolism. The APP intracellular domain was found in vivo and in vitro to increase the expression of the alkyl-dihydroxyacetonephosphate-synthase (AGPS), a rate limiting enzyme in plasmalogen synthesis. Alterations in APP dependent changes of AGPS expression result in reduced protein and plasmalogen levels. Under the pathological situation of AD, increased amyloid-beta level lead to increased reactive oxidative species production, reduced AGPS protein and plasmalogen level. Accordingly, phosphatidylethanol plasmalogen was decreased in the frontal cortex of AD compared to age matched controls. Our findings elucidate that plasmalogens are decreased as a consequence of AD and regulated by APP processing under physiological conditions.  相似文献   

8.
9.
10.
The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.  相似文献   

11.
The release of amyloidogenic amyloid-beta peptide (Abeta) from amyloid-beta precursor protein (APP) requires cleavage by beta- and gamma-secretases. In contrast, alpha-secretase cleaves APP within the Abeta sequence and precludes amyloidogenesis. Regulated and unregulated alpha-secretase activities have been reported, and the fraction of cellular alpha-secretase activity regulated by protein kinase C (PKC) has been attributed to the ADAM (a disintegrin and metalloprotease) family members TACE and ADAM-10. Although unregulated alpha-secretase cleavage of APP has been shown to occur at the cell surface, we sought to identify the intracellular site of PKC-regulated alpha-secretase APP cleavage. To accomplish this, we measured levels of secreted ectodomains and C-terminal fragments of APP generated by alpha-secretase (sAPPalpha) (C83) versus beta-secretase (sAPPbeta) (C99) and secreted Abeta in cultured cells treated with PKC and inhibitors of TACE/ADAM-10. We found that PKC stimulation increased sAPPalpha but decreased sAPPbeta levels by altering the competition between alpha- versus beta-secretase for APP within the same organelle rather than by perturbing APP trafficking. Moreover, data implicating the trans-Golgi network (TGN) as a major site for beta-secretase activity prompted us to hypothesize that PKC-regulated alpha-secretase(s) also reside in this organelle. To test this hypothesis, we performed studies demonstrating proteolytically mature TACE intracellularly, and we also showed that regulated alpha-secretase APP cleavage occurs in the TGN using an APP mutant construct targeted specifically to the TGN. By detecting regulated alpha-secretase APP cleavage in the TGN by TACE/ADAM-10, we reveal ADAM activity in a novel location. Finally, the competition between TACE/ADAM-10 and beta-secretase for intracellular APP cleavage may represent a novel target for the discovery of new therapeutic agents to treat Alzheimer's disease.  相似文献   

12.
Increased brain metal levels have been associated with normal aging and a variety of diseases, including Alzheimer's disease (AD). Copper and iron levels both show marked increases with age and may adversely interact with the amyloid-beta (Abeta) peptide causing its aggregation and the production of neurotoxic hydrogen peroxide (H(2)O(2)), contributing to the pathogenesis of AD. Amyloid precursor protein (APP) possesses copper/zinc binding sites in its amino-terminal domain and in the Abeta domain. Here we demonstrate that overexpression of the carboxyl-terminal fragment of APP, containing Abeta, results in significantly reduced copper and iron levels in transgenic mouse brain, while overexpression of the APP in Tg2576 transgenic mice results in significantly reduced copper, but not iron, levels prior to the appearance of amyloid neuropathology and throughout the lifespan of the mouse. Concomitant increases in brain manganese levels were observed with both transgenic strains. These findings, complemented by our previous findings of elevated copper levels in APP knock-out mice, support roles for APP and Abeta in physiological metal regulation.  相似文献   

13.
14.
A major source of free radical production in the brain derives from copper. To prevent metal-mediated oxidative stress, cells have evolved complex metal transport systems. The Alzheimer's disease amyloid precursor protein (APP) is a major regulator of neuronal copper homeostasis. APP knockout mice have elevated copper levels in the cerebral cortex, whereas APP-overexpressing transgenic mice have reduced brain copper levels. Importantly, copper binding to APP can greatly reduce amyloid beta production in vitro. To understand this interaction at the molecular level we solved the structure of the APP copper binding domain (CuBD) and found that it contains a novel copper binding site that favors Cu(I) coordination. The surface location of this site, structural homology of CuBD to copper chaperones, and the role of APP in neuronal copper homeostasis are consistent with the CuBD acting as a neuronal metallotransporter.  相似文献   

15.
We have measured the levels of typical end products of the processes of lipid peroxidation, protein oxidation, and total antioxidant capacity (TAC) in skin fibroblasts and lymphoblasts taken from patients with familial Alzheimer's disease (FAD), sporadic Alzheimer's disease (AD), and age-matched healthy controls. Compared to controls, the fibroblasts and lymphoblasts carrying amyloid precursor protein (APP) and presenilin-1 (PS-1) gene mutations showed a clear increase in lipoperoxidation products, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In contrast, the antioxidant defenses of cells from FAD patients were lower than those from normal subjects. Lipoperoxidation and antioxidant capacity in lymphoblasts from patients affected by sporadic AD were virtually indistinguishable from the basal values of normal controls. An oxidative attack on protein gave rise to greater protein carbonyl content in FAD patients than in age-matched controls. Furthermore, ADP ribosylation levels of poly(ADP-ribose) polymerase (PARP) nuclear substrates were significantly raised, whereas the PARP content did not differ significantly between fibroblasts carrying gene mutations and control cells. These results indicate that peripheral cells carrying APP and PS-1 gene mutations show altered levels of oxidative markers even though they are not directly involved in the neurodegenerative process of AD. These results support the hypothesis that oxidative damage to lipid, protein, and DNA is an important early event in the pathogenesis of AD.  相似文献   

16.
Presenilin 1 (PS1) is a critical component of the gamma-secretase complex, which is involved in the cleavage of several substrates including the amyloid precursor protein (APP) and Notch1. Based on the fact that APP and Notch are processed by the same gamma-secretase, we postulated that APP and Notch compete for the enzyme activity. In this report, we examined the interactions between APP, Notch, and PS1 using the direct gamma-secretase substrates, Notch 1 Delta extracellular domain (N1DeltaEC) and APP carboxyl-terminal fragment of 99 amino acids, and measured the effects on amyloid-beta protein production and Notch signaling, respectively. Additionally, we tested the hypothesis that downstream effects on PS1 expression may coexist with the competition phenomenon. We observed significant competition between Notch and APP for gamma-secretase activity; transfection with either of two direct substrates of gamma-secretase led to a reduction in the gamma-cleaved products, Notch intracellular domain or amyloid-beta protein. In addition, however, we found that activation of the Notch signaling pathway, by either N1 Delta EC or Notch intracellular domain, induced down-regulation of PS1 gene expression. This finding suggests that Notch activation directly engages gamma-secretase and subsequently leads to diminished PS1 expression, suggesting a complex set of feedback interactions following Notch activation.  相似文献   

17.
Menkes disease is an X‐linked, recessive disorder of copper metabolism that occurs in approximately 1 in 200,000 live births. The condition is characterized by skeletal abnormalities, severe mental retardation, neurologic degeneration, and patient mortality in early childhood. The symptoms of Menkes disease result from a deficiency of serum copper and copper‐dependent enzymes. A candidate gene for the disease has been isolated and designated MNK. The MNK gene codes for a P‐type cation transporting ATPase, based on homology to known P‐type ATPases and in vitro experimentation. cDNA clones of MNK in Menkes patients show diminished or absented hybridization in northern blot experiments. The Menkes protein functions to export excess intracellular copper and activates upon Cu(I) binding to the six metal‐binding repeats in the amino‐terminal domain. The loss of Menkes protein activity blocks the export of dietary copper from the gastrointestinal tract and causes the copper deficiency associated with Menkes disease. Each of the Menkes protein amino‐terminal repeats contains a conserved ‐X‐Met‐X‐Cys‐X‐X‐Cys‐ motif (where X is any amino acid). These metal‐binding repeats are conserved in other cation exporting ATPases involved in metal metabolism and in proteins involved in cellular defense against heavy metals in both prokaryotes and eukaryotes. An overview of copper metabolism in humans and a discussion of our understanding of the molecular basis of cellular copper homeostasis is presented. This forms the basis for a discussion of Menkes disease and the protein deficit in this disease. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 93–106, 1999  相似文献   

18.
Smith IF  Green KN  LaFerla FM 《Cell calcium》2005,38(3-4):427-437
Alzheimer's disease is a progressive and irreversible neurodegenerative disorder that leads to cognitive, memory and behavioural impairments. Two decades of research have implicated disturbances of intracellular calcium homeostasis as playing a proximal pathological role in the neurodegeneration associated with Alzheimer's disease. A large preponderance of evidence has been gained from the use of a diverse range of cell lines. Whilst useful in understanding the principal mechanism of neurotoxicity associated with Alzheimer's disease, technical differences, such as cell type or even the form of amyloid-beta used often underlie conflicting results. In this review, we discuss recent contributions that transgenic technology has brought to this field. For example, the triple transgenic mouse model of Alzheimer's disease has implicated intraneuronal accumulation of the amyloid-beta peptide as an initiating factor in synaptic dysfunction and behavioural deficits. Importantly, this synaptic dysfunction occurs prior to cell loss or extracellular amyloid plaque accumulation. The cause of synaptic dysfunction is unknown but it is likely that amyloid-beta and its ability to disrupt intracellular calcium homeostasis plays a key role in this process.  相似文献   

19.
Amyloid-beta, a peptide derived from the precursor protein APP, accumulates in the brain and contributes to the neuropathology of Alzheimer's disease. Increased generation of amyloid-beta might be caused by axonal transport inhibition, via increased dwell time of APP vesicles and thereby higher probability of APP cleavage by secretase enzymes residing on the same vesicles. We tested this hypothesis using a neuronal cell culture model of inhibited axonal transport and by imaging vesicular transport of fluorescently tagged APP and beta-secretase (BACE1). Microtubule-associated tau protein blocks vesicle traffic by inhibiting the access of motor proteins to the microtubule tracks. In neurons co-transfected with CFP-tau, APP-YFP traffic into distal neurites was strongly reduced. However, this did not increase amyloid-beta levels. In singly transfected axons, APP-YFP was transported in large tubules and vesicles moving very fast (on average 3 microm/s) and with high fluxes in the anterograde direction (on average 8.4 vesicles/min). By contrast, BACE1-CFP movement was in smaller tubules and vesicles that were almost 2x slower (on average 1.6 microm/s) with approximately 18x lower fluxes (on average 0.5 vesicles/min). Two-colour microscopy of co-transfected axons confirmed that the two proteins were sorted into distinct carriers. The results do not support the above hypothesis. Instead, they indicate that APP is transported on vesicles distinct from the secretase components and that amyloid-beta is not generated in transit when transport is blocked by tau.  相似文献   

20.
The Menkes copper ATPase (MNK) is a copper efflux ATPase that is involved in copper homeostasis. Little is known about the intracellular localization and cell-specific function of the MNK in human tissues. To investigate a possible role for this protein in lactation, we measured its expression in sections of tissue from nonlactating and lactating human breast. Western blot analysis showed that MNK expression was greater in lactating tissue than in nonlactating tissue. By confocal immunofluorescence, the MNK was detected in luminal epithelial cells of the alveoli and ducts but not in myoepithelial cells. In the nonlactating breast epithelial cells, the MNK had a predominantly perinuclear distribution. In lactating breast tissue, the distribution of the MNK was markedly altered. Lactating epithelial cells showed a granular, diffuse pattern, which extended beyond the perinuclear region of the cell. This pattern was similar to that observed in a previous study in which cultured CHO cells were exposed to high copper concentrations. Our results suggest that relocalization of the MNK is a physiological process, which may be mediated by copper levels in the breast or by hormones and other events taking place during lactation. A vesicular pathway for copper from the Golgi into milk, similar to that of calcium, is proposed.(J Histochem Cytochem 47:1553-1561, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号