首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the fact that the ruminant diet is rich in polyunsaturated fatty acids (PUFA), ruminant products – meat, milk and dairy – contain mainly saturated fatty acids (SFA) because of bacterial lipolysis and subsequent biohydrogenation of ingested PUFA in the rumen. The link between SFA consumption by man and coronary heart disease is well established. In contrast, ruminant products also contain fatty acids that are known to be beneficial to human health, namely conjugated linoleic acids (CLAs). The aims of research in this field have been to understand the microbial ecology of lipolysis and biohydrogenation and to find ways of manipulating ruminal microbes to increase the flow of PUFA and CLA from the rumen into meat and milk. This review describes our present understanding of the microbial ecology of ruminal lipid metabolism, including some apparently anomalous and paradoxical observations, and the status of how the metabolism may be manipulated and the possible consequential effects on other aspects of ruminal digestion. Intuitively, it may appear that inhibiting the ruminal lipase would cause more dietary PUFA to reach the mammary gland. However, lipolysis releases the non-esterified fatty acids that form the substrates for biohydrogenation, but which can, if they accumulate, inhibit the whole process. Thus, increasing lipase activity could be beneficial if the increased release of non-esterified PUFA inhibited the metabolism of CLA. Rumen ciliate protozoa do not carry out biohydrogenation, yet protozoal lipids are much more highly enriched in CLA than bacterial lipids. How could this happen if protozoa do not metabolise PUFA? The answer seems to lie in the ingestion of plant organelles, particularly chloroplasts, and the partial metabolism of the fatty acids by contaminating bacteria. Bacteria related to Butyrivibrio fibrisolvens are by far the most active and numerous biohydrogenating bacteria isolated from the rumen. But do we misunderstand the role of different bacterial species in biohydrogenation because there are uncultivated species that we need to understand and include in the analysis? Manipulation methods include dietary vegetable and fish oils and plant-derived chemicals. Their usefulness, efficacy and possible effects on fatty acid metabolism and on ruminal microorganisms and other areas of their metabolism are described, and areas of opportunity identified.  相似文献   

2.
Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3–N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.  相似文献   

3.

Background  

Health-promoting polyunsaturated fatty acids (PUFA) are abundant in forages grazed by ruminants and in vegetable and fish oils used as dietary supplements, but only a small proportion of PUFA finds its way into meat and milk, because of biohydrogenation in the rumen. Butyrivibrio fibrisolvens plays a major role in this activity. The aim of this study was to investigate the mechanisms by which PUFA affect the growth of B. fibrisolvens, how PUFA are metabolized and the metabolic response to growth in the presence of PUFA.  相似文献   

4.
Aims: To determine the effects of the removal of forage in high‐concentrate diets on rumen fermentation conditions and rumen bacterial populations using culture‐independent methods. Methods and Results: Detectable bacteria and fermentation parameters were measured in the solid and liquid fractions of digesta from cattle fed two dietary treatments, high concentrate (HC) and high concentrate without forage (HCNF). Comparison of rumen fermentation conditions showed that duration of time spent below pH 5·2 and rumen osmolality were higher in the HCNF treatment. Simpson’s index of 16S PCR‐DGGE images showed a greater diversity of dominant species in the HCNF treatment. Real‐time qPCR showed populations of Fibrobacter succinogenes (P = 0·01) were lower in HCNF than HC diets. Ruminococcus spp., F. succinogenes and Selenomonas ruminantium were at higher (P 0·05) concentrations in the solid vs the liquid fraction of digesta regardless of diet. Conclusions: The detectable bacterial community structure in the rumen is highly diverse. Reducing diet complexity by removing forage increased bacterial diversity despite the associated reduction in ruminal pH being less conducive for fibrolytic bacterial populations. Quantitative PCR showed that removal of forage from the diet resulted in a decline in the density of some, but not all fibrolytic bacterial species examined. Significance and Impact of the Study: Molecular techniques such as DGGE and qPCR provide an increased understanding of the impacts of dietary changes on the nature of rumen bacterial populations, and conclusions derived using these techniques may not match those previously derived using traditional laboratory culturing techniques.  相似文献   

5.
Ruminal microorganisms hydrogenate polyunsaturated fatty acids (PUFA) present in forages and thereby restrict the availability of health-promoting PUFA in meat and milk. The aim of this study was to investigate PUFA metabolism and the influence of PUFA on members of the ruminal microflora. Eleven of 26 predominant species of ruminal bacteria metabolised linoleic acid (LA; cis-9,cis-12–18:2) substantially. The most common product was vaccenic acid (trans-11–18:1), produced by species related to Butyrivibrio fibrisolvens. α-Linolenic acid (LNA; cis-9,cis-12,cis-15–18:3) was metabolised mostly by the same species. The fish oil fatty acids, eicosapentaenoic acid (EPA; 20:5(n − 3)) and docosahexaenoic acid (DHA; 22:6(n − 3)) were not metabolised. Cellulolytic bacteria did not grow in the presence of any PUFA at 50 μg ml−1, nor did some butyrate-producing bacteria, including the stearate producer Clostridium proteoclasticum, Butyrivibrio hungatei and Eubacterium ruminantium. Toxicity to growth was ranked EPA > DHA > LNA > LA. Cell integrity, as measured using propidium iodide, was damaged by LA in all 26 bacteria, but to different extents. Correlations between its effects on growth and apparent effects on cell integrity in different bacteria were low. Combined effects of LA and sodium lactate in E. ruminantium and C. proteoclasticum indicated that LA toxicity is linked to metabolism in butyrate-producing bacteria. PUFA also inhibited the growth of the cellulolytic ruminal fungi, with Neocallimastix frontalis producing small amounts of cis-9,trans-11–18:2 (CLA) from LA. Thus, while dietary PUFA might be useful in suppressing the numbers of biohydrogenating ruminal bacteria, particularly C. proteoclasticum, care should be taken to avoid unwanted effects in suppressing cellulolysis.  相似文献   

6.
Aims: To investigate, using culture‐independent methods, whether the ruminal bacterial structure, population and fermentation parameters differed between sampling locations and time. Methods and Results: The detectable bacteria and fermentation parameters in the digesta from five locations in the rumen of three cows at three time points were analysed. The PCR‐denaturing gradient gel electrophoresis (PCR‐DGGE) profiles were similar among digesta samples from five locations (95·4%) and three time points (93·4%) within cows; however, a lower similarity was observed for samples collected from different host animals (85·5%). Rumen pH and concentration of volatile fatty acids (VFA) were affected by time points of sampling relative to feeding. Conclusions: The detectable bacterial structure in the rumen is highly conserved among different locations and over time, while the quantity of individual bacterial species may change diurnally in response to the feeding. Significance and impact of the study: This study supplies the fundamental understanding of the microbial ecology in the rumen, which is essential for manipulation of ruminal microflora and subsequent improvement in animal production.  相似文献   

7.
Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan‐degrading organism whose genome encodes a large number of open reading frames annotated as fiber‐degrading enzymes. We have determined the three‐dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains—a C‐terminal SGNH domain and an N‐terminal jelly‐roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para‐nitrophenyl acetate and para‐nitrophenyl butyrate. The suite of fiber‐degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Studies on microbial biohydrogenation of fatty acids in the rumen are of importance as this process lowers the availability of nutritionally beneficial unsaturated fatty acids for incorporation into meat and milk but also might result in the accumulation of biologically active intermediates. The impact was studied of adsorption of 22:6n-3 (DHA) to particulate material on its disappearance during 24 h in vitro batch incubations with rumen inoculum. Four adsorbants were used in two doses (1 and 5 mg/ml of mucin, gum arabic, bentonite or silicic acid). In addition, the distribution of 22:6n-3 in the pellet and supernatant of diluted rumen fluid was measured. Bentonite and silicic acid did not alter the distribution of 22:6n-3 between pellet and supernatant nor increased the disappearance of 22:6n-3 during the incubation. Both mucin and gum arabic increased the recovery of 22:6n-3 in the supernatant, indicating that these compounds lowered the adsorption of the fatty acid to ruminal particles. This was associated with an increased disappearance of 22:6n-3, when initial 22:6n-3 was 0.06 or 0.10 mg/ml, and an increased formation of 22:0, when initial 22:6n-3 was 0.02 mg/ml, during the 24 h batch culture experiment. Addition of gum arabic to pure cultures of Butyrivibrio fibrisolvens or Butyrivibrio proteoclasticus did not negate the inhibitory effect of 22:6n-3 on growth. As both mucin and gum arabic provide fermentable substrate for ruminal bacteria, an additional experiment was performed in which mucin and gum arabic were replaced by equal amounts of starch, cellulose or xylan. No differences in disappearance of 22:6n-3 were observed, suggesting that the stimulatory effect of mucin and gum arabic on disappearance of 22:6n-3 most probably is not due to provision of an alternative site of adsorption but related to stimulation of bacterial growth. A relatively high proportion of 22:6n-3 can be reduced to 22:0 provided the initial concentration is low.  相似文献   

9.
The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A‐BM), a modified BM (MBM) with agar (A‐MBM), an MBM with phytagel (P‐MBM) and an MBM with gelrite (G‐MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A‐MBM, G‐MBM and P‐MBM, but the predominant cultural members, isolated from each medium, differed. A‐MBM and G‐MBM showed significantly higher numbers of different OTUs derived from isolates than A‐BM (< 0·05). The Shannon index indicated that the isolates of A‐MBM showed the highest diversity (H′ = 3·89) compared with those of G‐MBM, P‐MBM and A‐BM (H′ = 3·59, 3·23 and 3·39, respectively). Although previously uncultured rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A‐MBM, P‐MBM and G‐MBM.  相似文献   

10.
Treponema spp. are a commonly detected bacterial group in the rumen that are involved in the degradation of soluble fibers. In this study, a ruminal Treponema group-specific PCR primer targeting the 16S rRNA gene was designed and used to assess the phylogenetic diversity and diet association of this group in sheep rumen. Total DNA was extracted from rumen digesta of three sheep fed a diet based on alfalfa/orchardgrass hay or concentrate. The real-time PCR quantification indicated that the relative abundance of the Treponema group in the total rumen bacteria was as high as 1.05%, while the known species Treponema bryantii accounted for only 0.02%. Fingerprints of the Treponema community determined by 16S rDNA-targeted denaturing gradient gel electrophoresis (DGGE) analysis tended to differ among the diets. Principal component analysis of the DGGE profiles distinguished those Treponema associated with either the hay or the concentrate diets. Analysis of a Treponema 16S rRNA gene clone library showed phylogenetically distinct operational taxonomic units for a specific dietary condition, and significant (P=0.001) differences in community composition were observed among clone libraries constructed from each dietary regimen. The majority of clones (75.4%) had <97% sequence similarity with known Treponema. These results suggest the predominance of uncultured Treponema that appear to have distinct members related to the digestion of either hay or concentrate diet.  相似文献   

11.
Leng J  Xie L  Zhu R  Yang S  Gou X  Li S  Mao H 《Molecular biology reports》2011,38(8):4863-4872
The dominant rumen bacteria in Gayals, Yaks and Yunnan Yellow Cattle were investigated using PCR-DGGE approach. The analysis of DGGE profiles, identification of dominant bands and phylogenetic analysis 16S rDNA sequences in DGGE profiles were combined to reveal the dominant bacterial communities and compared the differences between those cattle species. DGGE profiles revealed that Gayals had the most abundant dominant bacteria and the lowest similarity of intraspecies between individuals than other two cattle species. A total of 45 sequences were examined and sequence similarity analysis revealed that Gayals had the most sequences appeared to uncultured bacteria, accounting for 85.0% of the total sequences, Yaks and Yunnan Yellow Cattle had 44.4 and 68.8% uncultured bacterial sequences, respectively. According to phylogenetic analysis, the rumen dominant bacteria of Gayals were mainly phylogenetically placed within phyla firmicutes and bacteroidetes, and the known bacteria were mainly belonged to the genera Lachnospiraceae bacterium, Ruminococcus flavefaciens and Clostridium celerecrescens. Moreover, the dominant bacteria of Yaks were also mainly belonged to phyla firmicutes and bacteroidetes, and the known dominant bacteria were including Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, Pseudobutyrivibrio ruminis, Schwartzia succinivorans and Clostridiales bacterium, most of them are common rumen bacteria. In addition, the dominant bacteria in Yunnan Yellow Cattle were belonged to phyla firmicutes, bacteroidetes and Actinobacteria, and the known dominant bacteria containing Prevotella sp., Staphylococci lentus, Staphylococcus xylosus and Corynebacterium casei. Present study first detected Staphylococcus lentus and Staphylococcus xylosus in the rumen of cattle.  相似文献   

12.
This study evaluated the effects of tannins on ruminal biohydrogenation (BH) due to shifts in the ruminal microbial environment in sheep. Thirteen lambs (45 days of age) were assigned to two dietary treatments: seven lambs were fed a barley-based concentrate (control group) while the other six lambs received the same concentrate with supplemental quebracho tannins (9.57% of dry matter). At 122 days of age, the lambs were slaughtered, and the ruminal contents were subjected to fatty acid analysis and sampled to quantify populations of Butyrivibrio fibrisolvens, which converts C18:2 c9-c12 (linoleic acid [LA]) to C18:2 c9-t11 (rumenic acid [RA]) and then RA to C18:1 t11 (vaccenic acid [VA]); we also sampled for Butyrivibrio proteoclasticus, which converts VA to C18:0 (stearic acid [SA]). Tannins increased (P < 0.005) VA in the rumen compared to the tannin-free diet. The concentration of SA was not affected by tannins. The SA/VA ratio was lower (P < 0.005) for the tannin-fed lambs than for the controls, suggesting that the last step of the BH process was inhibited by tannins. The B. proteoclasticus population was lower (−30.6%; P < 0.1), and B. fibrisolvens and protozoan populations were higher (+107% and +56.1%, respectively; P < 0.05) in the rumen of lambs fed the tannin-supplemented diet than in controls. These results suggest that quebracho tannins altered BH by changing ruminal microbial populations.The fatty acid profile of the meat and milk of ruminants is strongly affected by diet (2, 15). When ingested, the dietary polyunsaturated fatty acids (PUFA) undergo a process known as biohydrogenation (BH) carried out by ruminal microorganisms (20). During the BH of C18:2(n-6) (linoleic acid [LA]) and C18:3(n-3) (linolenic acid [LNA]) a number of C18:1 and C18:2 isomers are formed (6). The last step in the BH process leads to the formation of C18:0 (stearic acid [SA]). Among the intermediate products formed during this process, the isomer C18:2 c9t11 (rumenic acid [RA]) is active in preventing cancer in mammals (17). Only a small amount of the RA found in meat and milk originates during BH. It is produced to a larger extent in muscle and mammary glands from the desaturation of C18:1 t11 (vaccenic acid [VA], another intermediate of ruminal BH) by the action of Δ9-desaturase enzyme (41, 43).Ruminal BH is carried out mostly by bacteria belonging to the Butyrivibrio genus (38). Butyrivibrio fibrisolvens has the capacity to convert LA to RA and RA to VA, while Butyrivibrio proteoclasticus (previously classified as Clostridium proteoclasticum [35]) hydrogenates VA to SA (38, 39). According to Or-Rashid et al. (37), ruminal protozoa also play a role in BH by converting LA to RA. However, this issue is still controversial, as Devillard et al. (11) have reported that protozoa do not have the capability of hydrogenating LA. The proportion of BH intermediates in the rumen can vary depending on changes in ruminal microbial populations (7, 51). Changes in ruminal fatty acid profiles are also reflected in intramuscular fatty acid composition (48, 52).Tannins are phenolic compounds that are widespread in plants. When ingested by ruminants in large amounts, tannins can reduce the activity and the proliferation of ruminal microorganisms (34). Tannins from Lotus corniculatus (33) or from Acacia spp. (12) reduce the proliferation of B. proteoclasticus B316T and B. proteoclasticus P18, respectively. Durmic et al. (12) reported that VA increased and SA decreased when extracts from Acacia iteaphylla, which contains condensed tannins (1), were incubated in vitro with sheep ruminal fluid inoculated with B. fibrisolvens JW11 and B. proteoclasticus P18 strains. In two recent in vitro studies, the inclusion of tannins in fermentor systems containing bovine ruminal fluid inhibited the conversion of VA to SA, while no effect was detected on RA production (21, 47). These results have been also confirmed in vivo in the rumen of sheep fed a diet with 4.0% dry matter (DM) quebracho tannin (48). However, to date there is no in vivo study focusing on the effects of dietary tannins on the proliferation of the microorganisms involved in ruminal BH.We assessed whether dietary tannins may affect the BH pathway via changes in bacterial and protozoal ruminal populations. We gave particular emphasis to B. fibrisolvens and B. proteoclasticus. We also assayed the production of conjugated linoleic acids (CLAs) by linoleic acid isomerase (LA-I) enzyme.  相似文献   

13.
Analysis of 16S ribosomal RNA (rRNA)-encoding gene sequences from gut microbial ecosystems reveals bewildering genetic diversity. Some metabolic functions, such as glucose utilisation, are fairly widespread throughout the genetic spectrum. Others, however, are not. Despite so many phylotypes being present, single species or perhaps only two or three species often carry out key functions. Among ruminal bacteria, only three species can break down highly structured cellulose, despite the prevalence and importance of cellulose in ruminant diets, and one of those species, Fibrobacter succinogenes, is distantly related to the most abundant ruminal species. Fatty acid biohydrogenation in the rumen, particularly the final step of biohydrogenation of C18 fatty acids, stearate formation, is achieved only by a small sub-group of bacteria related to Butyrivibrio fibrisolvens. Individuals who lack Oxalobacter formigenes fail to metabolise oxalate and suffer kidney stones composed of calcium oxalate. Perhaps the most celebrated example of the difference a single species can make is the ‘mimosine story’ in ruminants. Mimosine is a toxic amino acid found in the leguminous plant, Leucaena leucocephala. Mimosine can cause thyroid problems by being converted to the goitrogen, 3-hydroxy-4(1H)-pyridone, in the rumen. Observations that mimosine-containing plants were toxic to ruminants in some countries but not others led to the discovery of Synergistes jonesii, which metabolises 3-hydroxy-4(1H)-pyridone and protects animals from toxicity. Thus, despite the complexities indicated by molecular microbial ecology and genomics, it should never be forgotten that gut communities contain important metabolic niches inhabited by species with highly specific metabolic capability.  相似文献   

14.
Faecal pollution contains a rich and diverse community of bacteria derived from animals and humans, many of which might serve as alternatives to the traditional enterococci and Escherichia coli faecal indicators. We used massively parallel sequencing (MPS) of the 16S rRNA gene to characterize microbial communities from wastewater treatment plant (WWTP) influent sewage from 12 cities geographically distributed across the USA. We examined members of the Clostridiales, which included the families Clostridiaceae, Lachnospiraceae and Ruminococcaceae for their potential as sewage indicators. Lachnospiraceae was one of the most abundant groups of faecal bacteria in sewage, and several Lachnospiraceae high‐abundance sewage pyrotags occurred in at least 46 of 48 human faecal samples. Clone libraries targeting Clostridium coccoides (C. coccoides) in sewage samples demonstrated that Lachnospiraceae‐annotated V6 pyrotags encompassed the previously reported C. coccoides group. We used oligotyping to profile the genus Blautia within Lachnospiraceae and found oligotypes comprised of 24 entropy components that showed patterns of host specificity. These findings suggest that indicators based on Blautia might have the capacity to discriminate between different faecal pollution sources. Development of source‐specific alternative indicators would enhance water quality assessments, which leads to improved ecosystem health and reduced human health risk due to waterborne disease.  相似文献   

15.
The bacterial communities in the food, intestines, and feces of earthworms were investigated by PCR-denaturing Gradient gel electrophoresis (DGGE). In this study, PCR-DGGE was optimized by testing 6 universal primer sets for microbial 16S rRNA in 6 pure culture strains of intestinal microbes in earthworms. One primer set effectively amplified 16S rRNA from bacterial populations that were found in the food, intestines, and feces of earthworms. Compared with the reference markers from the pure culture strains, the resulting DGGE profiles contained 28 unique DNA fragments. The dominant microorganisms in the food, intestines, and feces of earthworms included Rhodobacterales bacterium, Fusobacteria, Ferrimonas marina, Aeromonas popoffii, and soil bacteria. Other straisn, such as Acinetobacter, Clostridium, and Veillonella, as well as rumen bacteria and uncultured bacteria also were present. These results demonstrated that PCR-DGGE analysis can be used to elucidate bacterial diversity and identify unculturable microorganisms.  相似文献   

16.
Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4×4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen.  相似文献   

17.
Flow cytometry in combination with fluorescently labeled ribosomal RNA oligonucleotide probes was used for enumeration and monitoring of ruminal bacteria. The polyanionic azo dye Trypan Blue was used for discrimination between live bacterial cells and inorganic particles and the separation was further improved by lysozyme treatment and sonication. Cy3-labeled universally conserved probe EUB338 and FITC-labeledPrevotella bryantii specific probe PBB14 were used forin situ hybridization in mixed culture experiments and in samples of crude rumen fluid. The results were analyzed by flow cytometry. The separation ofP. bryantii andButyrivibrio fibrisolvens, another ruminal bacterium, in mixed culture experiments was satisfactory and enabled monitoring of these bacteria in a test system.P. bryantii cells were detected in crude rumen fluid samples only after supplementation with pure culture cells; this implicates a low concentration ofP. bryantii cellsin vivo (less than 100/nL,i.e. 105 per mL).  相似文献   

18.
Optimization of the fatty acid composition of ruminant milk and meat is desirable. Dietary supplementation of algae was previously shown to inhibit rumen biohydrogenation, resulting in an altered milk fatty acid profile. Bacteria involved in biohydrogenation belong to the Butyrivibrio group. This study was aimed at relating accumulation of biohydrogenation intermediates with shifts in Butyrivibrio spp. in the rumen of dairy cows. Therefore, an experiment was performed with three rumen-fistulated dairy cows receiving a concentrate containing algae (9.35 g/kg total dry matter [DM] intake) for 20 days. Supplementation of the diet with algae inhibited biohydrogenation of C18:2 omega 6 (n-6) and C18:3 n-3, resulting in increased concentrations of biohydrogenation intermediates, whereas C18:0 decreased. Addition of algae increased ruminal C18:1 trans fatty acid concentrations, mainly due to 6- and 20-fold increases in C18:1 trans 11 (t11) and C18:1 t10. The number of ciliates (5.37 log copies/g rumen digesta) and the composition of the ciliate community were unaffected by dietary algae. In contrast, supplementation of the diet with algae changed the composition of the bacterial community. Primers for the Butyrivibrio group, including the genera Butyrivibrio and Pseudobutyrivibrio, were specifically designed. Denaturing gradient gel electrophoresis showed community changes upon addition of algae without affecting the total amount of Butyrivibrio bacteria (7.06 log copies/g rumen DM). Clone libraries showed that algae affected noncultivated species, which cluster taxonomically between the genera Butyrivibrio and Pseudobutyrivibrio and might play a role in biohydrogenation. In addition, 20% of the clones from a randomly selected rumen sample were related to the C18:0-producing branch, although the associated C18:0 concentration decreased through supplementation of the diet with algae.  相似文献   

19.
The influence of fibre content of hay (H) and concentrate level (C) on local differences in the composition of ruminal digesta (ratio of solid to fluid digesta, DM, NDF, ADF and ADL content), particle size (MPL), specific gravity (SG) and fermentation (pH and concentrations of SCFA and bicarbonate) have been tested on two ruminally cannulated Friesian cows (520?kg BW) which were fed restricted, using individual cows as experimental units. Digesta samples were collected via cannula from three rumen layers: 5 to 10?cm (top) and 25?–?35?cm beneath the top of the particle mat (middle) and 5?–?10?cm above the rumen floor (bottom). For a main plot treatment (H·C), repeated samples were collected at four time intervals (1?h before and 2, 5 and 10?h after morning feeding) on each of two days. From top to bottom rumen the share of solid digesta mass (SM), DM and NDF contents of squeezed digesta fluid (SRF) and concentration of SCFA decreased (P?P?相似文献   

20.
The addition of Na‐lactate (50–150 mmol/1) to media with glucose had only marginal effect on the growth of rumen lactate‐producing bacteria at pH between 6.5 and 5.8. Butyrivibrio fibrisolvens was somewhat more sensitive to external lactate than Streptococcus bovis, Lactobacillus fermentum and Selenomonas ruminantium. It can be concluded that rumen lactate producers, which proliferate at the onset of rumen lactic acidosis, are not influenced by the lactate accumulation, except some non‐specific osmotic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号