首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
水稻花药培养植株后代的DNA变异   总被引:4,自引:0,他引:4  
对籼稻圭630和粳稻02428及其F1通过花药培养获得的81个DH系进行了RFLP分析,有28个探针揭示了DNA变异。81个DH系不同程度地发生了变异,并具有以下特点:(1)DNA变异类型包括限制性片段长度的变化、9NA片段的丢失以及DNA序列的扩增;(2)变异发生在籼稻圭630供体片段中的频率高于粳稻02428,表现出基因型差异;(3)染色体组中第3、8、9和10染色体较少发生变异,在其它染色体上均存在易变异位点;(4)在染色体的一些区段,相邻的探针均揭示了DNA变异,表明在染色体上存在DNA易变异区域;(5)变异位点和变异类型具有特异性,在同一位点不同的DH系中发生相同的变异。  相似文献   

2.
两种泥鳅中PdSox8和PdSox9基因的染色体定位   总被引:7,自引:0,他引:7  
应用染色体原位杂交技术,以地高辛标记的大鳞副泥鳅PdSox8和PdSox9基因片段为探针,研究了二者在泥鳅和大鳞副泥鳅染色体组中的定位。结果表明,在大鳞副泥鳅中PdSox8、PdSox9分别于端部着丝粒染色体第4和第2号即14和12染色体上,信号位点距着丝粒的相对距离分别为40.2%和67.5%,在泥鳅中,则分别位于t9、t6上,信息位点距着丝粒的相对蹁分别为58.3%和30.8%。  相似文献   

3.
用Nested-PCR方法从含Ds因子的转基因烟草DNA中克隆了Ds因子在烟草染色体插入位点的9个旁邻DNA片段,以这些片段作探针,和野生型烟草的DNA进行Southern杂交,以检测这些片段在烟草染色体上的低拷贝DNA。另外,对这些DNA片段进行核苷酸序列测定,并将它们的顺序与Genbank数据中已有的核苷酸序列相比较,其中长度为128核苷酸的片段1和荷兰芹的4CL-2基因的一个区段有57.8%  相似文献   

4.
用NestedPCR 方法从含Ds 因子的转基因烟草DNA 中克隆了Ds 因子在烟草染色体插入位点的9 个旁邻DNA 片段,以这些片段作探针,和野生型烟草的DNA 进行Southern 杂交,以检测这些片段在烟草基因组中的拷贝数,结果表明它们都属于烟草染色体上的低拷贝DNA。另外,对这些DNA 片段进行核苷酸序列测定,并将它们的顺序与Genbank 数据库中已有的核苷酸序列相比较,其中长度为128 核苷酸的片段1 和荷兰芹的4CL2 基因的一个区段有57 .8 % 同源性,而另一长度为169 核苷酸的片段3 和百合中的反转座子的一个区段有60 .9 % 的同源性。这都表明Ds 因子在异源植物烟草中插入染色体单拷贝基因的机率很高,这对转座子标签法克隆基因是非常有利的。  相似文献   

5.
玉米两个RFLP标记的原位单杂交与共杂交定位的比较   总被引:4,自引:0,他引:4  
杭超  宋运淳 《遗传学报》1999,26(1):69-75
RFLP标记bn18.23和 umc111位于玉米遗传日第 4连锁群近端,彼此密切连锁但次序尚未确定。用生物素标记对它们进行了原位单杂交和共杂交的比较定位。在植物中,这类原位共杂交的研究为首次报道。在单一探针的原位杂交中 umc111被定位在第 1、 4和9染色体长上,与着丝粒的百分距离分别是7.36±2.65、63.67±1.07、47.87±2.90。bn18.23被定位在第4和8染色体长臂上,与着丝粒的百分距离分别是87.42±2.45和27.60±1.75,清楚地表明了这两个标记在第4染色体上的次序。bn18.23和umc111分别与编码过氧化氢酶的cat3基因和编码丝氨酸/苏氨酸蛋白激酶的cde2A基因紧密连锁。根据供试RFLP标记检出位点推断了基因cdc2A和cat3的物理位置。原位共杂交在第 4染色体长臂上同时显示出了umc111和bn18.23两个标记的杂交信号,它们的位置分别与单一探针原位杂交的位置基本吻合。这为低拷贝或单一拷贝等小片段DNA物理定位的可靠性以及它们共杂交的可行性提供了令人信服的证据。  相似文献   

6.
玉米优异早熟种质单330开花相关性状的QTL分析   总被引:4,自引:0,他引:4  
玉米开花相关性状与玉米的成熟期和产量有密切的联系。通过对玉米CN165×单330(早熟种质)群体的130个F2:3家系开花相关性状在3个环境下进行分子鉴定和数量性状位点(QTL)分析,结果表明,在3个环境中检测到控制抽雄天数的10个QTL,分别位于第2、3、4、5、7、8染色体上,在第8染色体上同一区域在3种环境下都检测到了QTL;检测到控制散粉天数的10个QTL,分别位于第1、2、3、5、7、8染色体上,在第8染色体上同一区域在2种环境下都检测到了QTL;检测到控制吐丝天数的4个QTL,分别位于第4、5、8染色体上,在第8染色体不同环境下都检测到了2个QTL;仅仅在一个环境中检测到控制ASI的2个QTL,分别位于第6、9染色体上。这些QTL的基因效应以部分显性和超显性为主。研究表明,第8染色体上ph i060-um c2401区域(8.03~8.04)是一个研究开花相关性状的重要基因组区段,涉及到的标记可以作为分子标记辅助选择的重要候选标记。  相似文献   

7.
海岛棉原位杂交及核型比较   总被引:15,自引:2,他引:13  
采用A染色体组(A genome)棉种亚洲基因组DNA(gDNA)为探针,对海岛棉体细胞染色体进行荧光原位杂交(FISH),结果发现52条染色体中有杂交信号与否的刚好各一半,从而直观地证实了海岛棉异源双二倍体起源的理论,但是,染色体的长度A亚组的并非全部大于D亚组的。海岛棉基于FISH图像的核型公式为:2n=4x=52=38m 14sm(sat)。3对随体染色体序号分别是A亚组第11、D亚组第22和25,均属于近中部着丝点(sm)类型,随体均在各自杂色体的短臂上,而且与所有染色体无关晨同一亚组起源。A亚组第5、6和9对染色体长臂发生长了片段的易位,易位的片段较大,占所在染色体和蔗的百分率依次为19.21%、17.69%和12.88%,在D亚组13对染色体中,最少5对的着丝点区域多或少地显示出与亚洲棉gDNA探针杂交的红色荧光信号,意味着有A亚组染色体的交换。  相似文献   

8.
水稻分蘖角度的QTLs分析   总被引:19,自引:5,他引:14  
分蘖角是水稻株型构成的重要性状之一,在育种上人有极其重要的意义,利用分蘖角度差异显著的1对籼粳亲本,将其杂交F1代花培加倍,构建了1个DH群体,考察了115个DH株系的分蘖角度,并使用该群体构建的分子图谱进行数量性状座痊(QTLs)分析。分别在第9和12个染色体上检测3个QTLs(qTA-9a、qTA-9b和qTA-12),贡献率分别为22.7%、11.9%和20.9%,其加性效应均为负,表明由分蘖角度较大的窄占青8号的基因控制,并讨论了这种由主产和微效基因控制的分蘖性状在育种学上的应用。  相似文献   

9.
人类染色体8q24.1带特异性微小卫星DNA的筛选   总被引:5,自引:0,他引:5  
徐磊 《遗传学报》1997,24(1):1-6
本研究运用人类高分辨染色体显微切割、PCR技术获得的8q24.1带特异性探针池,构建了该区带的pUC19文库,从中筛选出48个含CA重复顺序的微小卫星DNA的克隆,已完成12个克隆的序列分析,发现了一个世界上至今未曾报道过的、在正常人群中已检出11个等位片段的、杂合度在中国汉族人群和美国盎格鲁撤克逊族人群中分别达0.84和0.83的高度多态的微小卫星DNA(编号:D8S7F),经PCR检测人鼠杂种细胞系列,证实其来源于人8号染色体。  相似文献   

10.
水稻叶绿素含量动态QTL分析   总被引:2,自引:0,他引:2  
为剖析水稻不同生育时期叶绿素含量的变化动态及遗传机制,以‘Sasanishiki’(粳稻)、‘Habataki’(籼稻)及其杂交衍生的85个回交重组自交系(BILs)群体为材料,对控制水稻叶片叶绿素含量的数量性状基因位点(QTL)变化动态进行了分析。共检测到39个QTL,包括26个非条件QTL和13个条件QTL,分布在除第7和第11号染色体以外的10条染色体上,平均每个时期检测到3.25个非条件QTL。其中生育前期和生育中后期检测到的QTL位点较少,仅为1—3个;在生育中期(盛期)检测到的QTL位点相对较多,一般为4~5个。在生育期的中期和后期均能在第1和2号染色体上检测到控制叶绿素含量的QTL,并且这些QTL位点在1和2号染色体上呈现聚集现象。本研究同时发现了一些新的QTL位点,这些QTL将有助于我们更全面地了解叶绿素在不同发育时期的遗传基础。  相似文献   

11.
Segmental Duplications Are Common in Rice Genome   总被引:1,自引:0,他引:1  
Segmental duplications on rice (Oryza sativa L.) chromosomes 8, 9, 11, and 12 were studied by examining the distributions of sequences resolved by 13 probes detecting multiple copies of DNA sequences. Four of the hybridization bands detected by a repetitive sequence probe, rTRS, were mapped to the ends of all the four chromosomes. Two or three of the bands detected by each of the other 12 probes were also mapped to different chromosomes. The bands detected by the same probe usually occurred in similar locations of different chromosomes. Loci detected by different DNA probes were often similarly arranged on different chromosomes. Chromosomes 8 and 9 showed colinearity of marker loci arrangement indicating a possible common origin. A segment on chromosome 9 was also very similar to the previously reported duplicated fragments on the ends of chromosomes 11 and 12 which were also detected in this study, indicating a likely common origin. Moreover, the various degrees of distributional similarity of the segments suggest a complex relationship among the chromosomes in the evolution of the rice genome. These results support the proposition that chromosome duplication and diversification may be a mechanism for the origin and evolution of the chromosomes in the rice genome.  相似文献   

12.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

13.
Genetic and physical mapping of telomeres and macrosatellites of rice   总被引:5,自引:0,他引:5  
Telomeres and telomere-associated satellites of rice were genetically and physically analyzed by pulsed-field gel electrophoresis (PFGE) using Arabidopsis telomeric DNA and rice satellite sequences as probes. We demonstrate that Arabidopsis telomeric sequences hybridize to rice telomeres under the conditions of high stringency. Using the Arabidopsis probe, multiple, discrete telomeric fragments could be identified on pulsed-field gel blots of rice DNAs digested with rare-cutting restriction enzymes. Most of the telomeric bands larger than 300 kb are physically linked with satellite bands as revealed by PFGE. Some of the telomeric and satellite bands segregate in a Mendelian fashion and are highly reproducible. Three such telomeric bands have been mapped to the distal ends of RFLP linkage groups: Telsm-1 on chromosome 8, Telsa-1 on chromosome 9 and Telsm-3 on chromosome 11. One segregating satellite band was mapped to an internal region of chromosome 10. Telomeric fragments were shown not only to be genetically linked to but also physically linked (based on PFGE) to the terminal RFLP markers. The physical distance from telomeric sequences to a distal RFLP marker, r45s gene, on chromosome 9, is 200 kb while the distance from telomeric sequences to RG98, a terminal RFLP marker on chromosome 11, is 260 kb. Physical maps of the telomere regions of chromosome 9 and chromosome 11 are presented.  相似文献   

14.
Twenty-six human Y-chromosome-derived DNA sequences, free of repetitive material, were used to probe male and female genomic blots. We present data from a detailed analysis and chromosomal location of the bands detected by such probes, which demonstrate extensive DNA sequence homology between the mammalian sex chromosomes and autosomes. Under stringent conditions, nine Y-derived probes reacted exclusively with the Y chromosome, 12 probes detected homologous sequences present on both the Y and the X, four probes detected homologies between Y and autosome(s) without any X counterpart and, finally, one probe hybridized to homologous sequences on Y, X and autosome(s). These data are consistent with the hypothesis of a common evolutionary origin for the mammalian sex chromosomes and reveal structural similarities between Y-located and autosomal non-repetitive sequences.  相似文献   

15.
Xiong Z  Pires JC 《Genetics》2011,187(1):37-49
Investigating recombination of homoeologous chromosomes in allopolyploid species is central to understanding plant breeding and evolution. However, examining chromosome pairing in the allotetraploid Brassica napus has been hampered by the lack of chromosome-specific molecular probes. In this study, we establish the identification of all homoeologous chromosomes of allopolyploid B. napus by using robust molecular cytogenetic karyotypes developed for the progenitor species Brassica rapa (A genome) and Brassica oleracea (C genome). The identification of every chromosome among these three Brassica species utilized genetically mapped bacterial artificial chromosomes (BACs) from B. rapa as probes for fluorescent in situ hybridization (FISH). With this BAC-FISH data, a second karyotype was developed using two BACs that contained repetitive DNA sequences and the ubiquitous ribosomal and pericentromere repeats. Using this diagnostic probe mix and a BAC that contained a C-genome repeat in two successive hybridizations allowed for routine identification of the corresponding homoeologous chromosomes between the A and C genomes of B. napus. When applied to the B. napus cultivar Stellar, we detected one chromosomal rearrangement relative to the parental karyotypes. This robust novel chromosomal painting technique will have biological applications for the understanding of chromosome pairing, homoeologous recombination, and genome evolution in the genus Brassica and will facilitate new applied breeding technologies that rely upon identification of chromosomes.  相似文献   

16.
Infection of mouse embryos with Moloney murine leukemia virus (M-MuLV) has yielded several mouse substrains with stable germ line integration of retroviral DNA at distinct chromosomal loci (Mov loci; Jaenisch et al., 1981). There is evidence that flanking DNA sequences can have an effect on virus expression and, conversely, inserted viral DNA may affect the expression of adjacent host genes. As part of our studies on the interaction of inserted M-MuLV with the mouse genome, we have chromosomally mapped four different Mov loci by hybridizing single-copy mouse sequences, flanking the proviral DNA, to interspecies somatic cell hybrids. Furthermore, these sequences were assigned regionally by in situ hybridization to mouse metaphase chromosomes. In Mov-13 mice, M-MuLV had inserted into the alpha 1(I) collagen gene leading to early embryonic death in homozygotes. We have assigned this locus to the distal region of chromosome 11. Thus, the alpha 1(I) collagen gene is part of an evolutionarily conserved linkage group with the homologous genes on human chromosome 17. Three other proviral integration sites were mapped to chromosome 1, bands BC (Mov-7), chromosome 11, bands BC (Mov-9), and chromosome 3, bands FG (Mov-10). The Mov-10-specific probe detects an EcoRI-specific restriction fragment length polymorphism, which can make this probe a useful genetic marker.  相似文献   

17.
Kilian  A.  Chen  J.  Han  F.  Steffenson  B.  Kleinhofs  A. 《Plant molecular biology》1997,35(1-2):187-195
The barley stem rust resistance genes Rpg1 and rpg4 were mapped in barley on chromosomes 1P and 7M, respectively and the syntenous rice chromosomes identified as 6P and 3P by mapping common probes in barley and rice. Rice yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC) and cosmid clones were used to isolate probes mapping to the barley Rpg1 region. The rice BAC isolated with the pM13 probe was a particularly excellent source of probes. A high-resolution map of the Rpg1 region was established with 1400 gametes yielding a map density of 3.6 markers per 0.1 cM. A detailed physical map was established for the rice BAC fragment containing the Rpg1-flanking markers pM13 and B24. This fragment covers a barley genetic distance of 0.6 cM and a rice DNA physical distance of ca. 70 kb. The distribution of barley cross-overs in relation to the rice DNA physical distances was extremely uneven. The barley genetic distance between the pM13 marker and Rpg1 was 0.1 cM per ca. 55 kb, while on the proximal side it was 0.5 cm per ca. 15 kb. Three probes from the distal end of the pM13 BAC mapped 3.0 cm proximal of Rpg1 and out of synteny with rice. These experiments confirm the validity of using large insert rice clones as probe sources to saturate small barley (and other large genome cereals) genome regions with markers. They also establish a note of caution that even in regions of high microsynteny, there may be small DNA fragments that have transposed and are no longer in syntenous positions.  相似文献   

18.
This paper describes a fluorescence in situ hybridization (FISH) analysis of three different repetitive sequence families, which were mapped to mitotic metaphase chromosomes and extended DNA fibers (EDFs) of the two subspecies of rice (Oryza sativa), indica and japonica (2n=2x=24). The repeat families studied were (1) the tandem repeat sequence A (TrsA), a functionally non-significant repeat; (2) the [TTTAGGG]n telomere sequence, a non-transcribed, tandemly repeated but functionally significant repeat; and (3) the 5S ribosomal RNA (5S rDNA). FISH of the TrsA repeat to metaphase chromosomes of indica and japonica cultivars revealed clear signals at the distal ends of twelve and four chromosomes, respectively. As shown in a previous report, the 17S ribosomal RNA genes (17S rDNA) are located at the nucleolus organizers (NORs) on chromosomes 9 and 10 of the indica cultivar. However, the japonica rice lacked the rDNA signals on chromosome 10. The size of the 5S rDNA repeat block, which was mapped on the chromosome 11 of both cultivars, was 1.22 times larger in the indica than in the japonica genome. The telomeric repeat arrays at the distal ends of all chromosome arms were on average three times longer in the indica genome than in the japonica genome. Flow cytometric measurements revealed that the nuclear DNA content of indica rice is 9.7% higher than that of japonica rice. Our data suggest that different repetitive sequence families contribute significantly to the variation in genome size between indica and japonica rice, though to different extents. The increase or decrease in the copy number of several repetitive sequences examined here may indicate the existence of a directed change in genome size in rice. Possible reasons for this phenomenon of concurrent evolution of various repeat families are discussed. Received: 9 August 1999 / Accepted: 29 December 1999  相似文献   

19.
The aldolase genes represent an ancient gene family with tissue-specific isozymic forms expressed only in vertebrates. The chromosomal locations of the aldolase genes provide insight into their tissue-specific and developmentally regulated expression and evolution. DNA probes for the human aldolase-A and -C genes and for an aldolase pseudogene were used to quantify and map the aldolase loci in the haploid human genome. Genomic hybridization of restriction fragments determined that all the aldolase genes exist in single copy in the haploid human genome. Spot-blot analysis of sorted chromosomes mapped human aldolase A to chromosome 16, aldolase C to chromosome 17, the pseudogene to chromosome 10; it previously had mapped the aldolase-B gene to chromosome 9. All loci are unlinked and located on to two pairs of morphologically similar chromosomes, a situation consistent with tetraploidization during isozymic and vertebrate evolution. Sequence comparisons of expressed and flanking regions support this conclusion. These locations on similar chromosome pairs correctly predicted that the aldolase pseudogene arose when sequences from the aldolase-A gene were inserted into the homologous aldolase location on chromosome 10.  相似文献   

20.
Telomereistheessentialgeneticlocusattheendsofalleukaryoticchromosomes.TheywereproposedtocapchromosomespreventingtheendtoendfusionsbetweenbrokenendsandcontinualterminalDNAlossduringreplication.Theyalsohaveinfluencesonmembranechromosomeinteractionandthe…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号