首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to determine how long increased insulin sensitivity, elicited by exercise training, persists after the end of training and what the effect of weight gain is on this retention. Exercise-trained (ET) rats ran voluntarily in freely rotating wheel cages, and insulin sensitivity was assessed by oral glucose tolerance tests (OGTT) and insulin suppression tests (IST). After training, ET rats were retired for 1, 3, or 7 days (R1, R3, or R7). Initial OGTT and IST studies indicated that sensitivity to insulin-induced glucose uptake was increased in ET rats compared with sedentary control (C) rats and was progressively lost with retirement: ET greater than R1 and R3 greater than R7 and C rats, and this reaction was generally associated with a rapid gain in body weight. Subsequent IST tests were performed on C and R7 rats fed laboratory chow or a hypocaloric diet consisting of equal parts of cellulose and chow for 7 days before the test. The results of these tests showed that steady-state serum glucose (SSSG) levels averaged 165 +/- 12 mg/dl for chow-fed C rats and 172 +/- 11 mg/dl for chow-fed R7 rats that gained body weight at rates twice those of C rats. Chow-fed R7 rats, gaining weight at rates comparable to C rats, had SSSG levels of 104 +/- 6 mg/dl. C and R7 rats fed the hypocaloric diet had SSSG values of 102 +/- 6 and 59 +/- 4 mg/dl, respectively. Muscle glycogen levels were comparable in all groups, and liver glycogen was lower in C and R7 rats fed the hypocaloric diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To evaluate the relationship between enhanced insulin action and level of exercise training, in vivo glucose uptake was assessed in the absence of added insulin and during insulin-stimulated conditions for three activity levels of voluntarily trained rats (low 2-5 km/day, medium 6-9 km/day, high 11-16 km/day). After rats rested for 24 h and fasted overnight, glucose uptake was estimated by comparing steady-state serum glucose (SSSG) levels at low insulin (SSSI) concentrations achieved during an insulin suppression test. In the absence of added insulin, SSSI averaged approximately 20 microU/ml and glucose uptake was similar for high runners and younger weight-matched controls. However, with insulin added to sustain SSSI at approximately 35 microU/ml, SSSG was significantly reduced in all runners (P less than 0.02), with the lowest value attained in high runners. Fasting serum triglycerides were also reduced in all runners (P less than 0.05), with the lowest values seen in medium and high runners. The concentration of glycogen in liver and select skeletal muscles at the start of the study was not different between trained and control rats, suggesting that enhanced insulin-stimulated glucose uptake was not the result of lower glycogen levels. In addition, glycogen synthase and succinate dehydrogenase activities in biceps femoris muscle were only elevated for high runners, but glycogen synthase activity was not enhanced in plantaris muscle and was decreased in soleus muscle. These findings indicate that enhanced insulin-stimulated glucose uptake and reduced serum triglyceride concentrations induced in exercise-trained rats at varying activity levels are dissociated from changes in glycogen synthase and oxidative enzyme activity for skeletal muscle.  相似文献   

3.
Unlike calorie restriction, exercise fails to extend maximum life span, but the mechanisms that explain this disparate effect are unknown. We used a 24-wk protocol of treadmill running, weight matching, and pair feeding to compare the effects of exercise and calorie restriction on biomarkers related to aging. This study consisted of young controls, an ad libitum-fed sedentary group, two groups that were weight matched by exercise or 9% calorie restriction, and two groups that were weight matched by 9% calorie restriction + exercise or 18% calorie restriction. After 24 wk, ad libitum-fed sedentary mice were the heaviest and fattest. When weight-matched groups were compared, mice that exercised were leaner than calorie-restricted mice. Ad libitum-fed exercise mice tended to have lower serum IGF-1 than fully-fed controls, but no difference in fasting insulin. Mice that underwent 9% calorie restriction or 9% calorie restriction + exercise, had lower insulin levels; the lowest concentrations of serum insulin and IGF-1 were observed in 18% calorie-restricted mice. Exercise resulted in elevated levels of tissue heat shock proteins, but did not accelerate the accumulation of oxidative damage. Thus, failure of exercise to slow aging in previous studies is not likely the result of increased accrual of oxidative damage and may instead be due to an inability to fully mimic the hormonal and/or metabolic response to calorie restriction.  相似文献   

4.
Caloric intake is increased in rats fed a diet containing greater fat or sugar than that found in laboratory chow. Because such diet-induced hyperphagia has been studied primarily in sedentary male rats, our goal here was to investigate the effects of sex and exercise on caloric intake of a diet (chow supplemented with sweet milk) chosen for its ability to stimulate hyperphagia. Rats were housed individually in cages that provided access to running wheels, and daily caloric intake of chow alone and then chow plus sweet milk was monitored during sedentary and active conditions. In sedentary rats, chow intake was greater in males compared with females. Wheel running produced similar decreases in chow intake in both sexes. Availability of the chow plus milk diet increased caloric intake compared with that observed in chow-fed rats. This diet-induced hyperphagia was significantly greater in sedentary females (35.7 +/- 3.1% increase) relative to sedentary males (9.1 +/- 2.2% increase). In addition, 35% of sedentary females consuming the chow plus milk diet developed estrous cycle disruptions. Wheel running decreased intake of the chow plus milk diet in both sexes. In active males, diet-induced hyperphagia was abolished; caloric intake was reduced to that observed during chow feeding. In active female rats, diet-induced hyperphagia was attenuated but not abolished; caloric intake of the chow plus milk diet remained greater than that observed during chow feeding. We conclude that female rats are more vulnerable than male rats to this form of diet-induced hyperphagia.  相似文献   

5.
The present study examined the effect of combination of short-term calorie restriction (CR) and moderate exercise on insulin action in normal rats. Rats were divided randomly into 4 groups: ad libitum, sedentary (A-Sed); calorie restriction, sedentary (CR-Sed); ad libitum, exercise (A-Ex); and calorie restriction, exercise (CR-Ex). Rats in the exercise groups were run on a rodent treadmill. Rats in the CR groups were fed every alternate day. Oral glucose tolerance test (OGTT) showed improvements in both CR-Sed and A-Ex groups compared with the A-Sed group; no further improvement in glucose tolerance was observed in the CR-Ex group. In contrast, glucose infusion rates (GIRs) determined by the hyperinsulinemic-euglycemic clamp method indicated that the GIR of the CR and exercise combination was significantly better than that of the sole intervention of CR or exercise. There was no difference in the levels of fasting glucose, insulin, or high-molecular weight forms of adiponectin among the 4 groups. Protein expression of GLUT-4 in the skeletal muscle increased by exercise, but not by CR. Our findings indicate that the combination of exercise and CR may be effective in enhancing insulin sensitivity at the skeletal muscle in normal subjects.  相似文献   

6.
This study was undertaken to evaluate the combined effects of sucrose feeding and exercise training on serum insulin, triglycerides, as well as cholesterol and its distribution into lipoproteins of female Wistar rats. The animals were fed ad libitum either laboratory chow alone, or chow and a 32% aqueous sucrose solution. Half of each dietary group was submitted to an exercise-training program. Both sucrose feeding and exercise training elicited greater energy intake. Sucrose feeding produced a marked elevation in triglyceridemia that was prevented by exercise training. Insulin levels paralleled those of triglycerides. The sucrose-fed animals had higher total cholesterol levels than the animals given chow. Although exercise training did not affect total cholesterol in the chow-fed animals, it partly prevented the sucrose-induced elevation in total cholesterol. Cholesterol in the lipoproteins of lower densities was increased significantly with sucrose feeding, and exercise training totally prevented this augmentation. The amount of cholesterol carried by high-density lipoprotein (HDL) was not affected by exercise training in the chow-fed animals. In contrast, sucrose feeding increased HDL-cholesterol in sedentary animals, whereas exercise training partly prevented this increase. The HDL/total cholesterol ratio was similar in all groups. Changes in insulin concentration underline the importance of this hormone in the regulation of blood lipid levels.  相似文献   

7.
Calorie restriction of young male rats increases plasma prolactin, decreases luteinizing hormone (LH) and testosterone, and disrupts their 24 h secretory pattern. To study whether this could be the consequence of stress, we examined the 24 h variations of plasma adrenocorticotropic hormone (ACTH) corticosterone, growth hormone (GH), leptin, and adrenal corticosterone. Rats were submitted to a calorie restriction equivalent to a 66% of usual intake for 4 weeks, starting on day 35 of life. Controls were kept in individual cages and allowed to eat a normal calorie regimen. Significantly lower ACTH levels were detected in calorie-restricted rats. Plasma corticosterone levels during the light phase of the daily cycle were significantly higher in calorie-restricted rats. Time-of-day variation in plasma ACTH and corticosterone levels attained significance in calorie-restricted rats only, with a maximum toward the end of the resting phase. The daily pattern of adrenal gland corticosterone mirrored that of circulating corticosterone; however, calorie restriction reduced its levels. Plasma ACTH and corticosterone correlated significantly in controls only. Calorie restriction decreased plasma GH and leptin, and it distorted 24 h rhythmicity. In a second study, plasma ACTH and corticosterone levels were measured in group-caged rats, isolated control rats, and calorie-restricted rats during the light phase of the daily cycle. Plasma ACTH of calorie-restricted rats was lower, and plasma corticosterone was higher, compared with isolated or group-caged controls. The changes in the secretory pattern of hormones hereby reported may be part of the neuroendocrine and metabolic mechanisms evolved to maximize survival during periods of food shortage.  相似文献   

8.
Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obese subjects, through its overexpression in fat tissue. However, how exercise can modify the expression of TNF-alpha is controversial. We examined TNF-alpha in adipose tissue using an animal model of insulin resistance that was produced by feeding rats a diet high in sucrose. The rats were allocated to one of three groups: those receiving a starch-based diet (control group): those fed a high-sucrose diet (sucrose-fed group): and those fed a high-sucrose diet and given wheel exercise (exercised group). The animals were allowed to eat and drink ad lib for 4 or 12 weeks (4 wk: control n=7, sucrose-fed n=7, exercised n=10; 12 wk: control n=5, sucrose-fed n=5, exercised n=9). The voluntary wheel exercise was initiated with the feeding of the high-sucrose diet. The rats in the exercise groups ran 15 +/- 3 km/week. We showed that 12-week voluntary running exercise significantly (P<0.05) increased both TNF-alpha protein (5-fold) and mRNA (1.4 fold) in the mesenteric fat of insulin-resistant rats compared to non-exercised sucrose-fed mice. Accordingly, in exercised group, plasma glucose (124 +/- 9 mEq/L vs 141 +/- 11 mEq/L). and free fatty acid (0.98 +/- 0.07 mEq/L vs 1.4 +/- 0.05 mEq/L) concentrating in portal vein blood were reduced compared to sucrose-fed group. The amounts of fatty tissue both in mesenteric and subcutaneous tissues were significantly (P<0.05) decreased through running exercise. We consider that up-regulation of TNF-alpha in mesenteric fat may be a compensatory mechanism for the reduction of fatty acid in adipose tissues and this change could control metabolic homeostasis during exercise to modulate a hyperinsulinemic state.  相似文献   

9.
10.
There is substantial evidence in the literature that elevated plasma free fatty acids (FFA) play a role in the pathogenesis of type 2 diabetes. CVT-3619 is a selective partial A(1) adenosine receptor agonist that inhibits lipolysis and lowers circulating FFA. The present study was undertaken to determine the effect of CVT-3619 on insulin resistance induced by high-fat (HF) diet in rodents. HF diet feeding to rats for 2 wk caused a significant increase in insulin, FFA, and triglyceride (TG) concentrations compared with rats fed chow. CVT-3619 (1 mg/kg) caused a time-dependent decrease in fasting insulin, FFA, and TG concentrations. Acute administration of CVT-3619 significantly lowered the insulin response, whereas glucose response was not different with an oral glucose tolerance test. Treatment with CVT-3619 for 2 wk resulted in significant lowering of FFA, TG, and insulin concentrations in rats on HF diet. To determine the effect of CVT-3619 on insulin sensitivity, hyperinsulinemic euglycemic clamp studies were performed in C57BL/J6 mice fed HF diet for 12 wk. Glucose infusion rate was decreased significantly in HF mice compared with chow-fed mice. CVT-3619 treatment 15 min prior to the clamp study significantly (P < 0.01) increased glucose infusion rate to values similar to that for chow-fed mice. In conclusion, CVT-3619 treatment lowers FFA and TG concentrations and improves insulin sensitivity in rodent models of insulin resistance.  相似文献   

11.
High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more (P < 0.05) calories from fat (31.9 +/- 1.2 vs. 2.4 +/- 0.2 kcal/day) and had significantly greater final body weights (280 +/- 10 vs. 250 +/- 5 g) and total visceral fat (24 +/- 3 vs. 10 +/- 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor beta-subunit (IR-beta) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3beta (GSK-3beta) Ser9, relative to circulating insulin levels, were decreased by 40-59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3beta overactivity.  相似文献   

12.
The effects of exercise training on glucose-stimulated insulin secretion (GSIS) were studied in male Sprague-Dawley rats made mildly to severely diabetic by partial pancreatectomy. Exercise trained (10 wk treadmill; T) and untrained (Unt) rats were grouped according to posttraining fed-state hyperglycemia as follows: T less than 200 and Unt less than 200 (glucose concn less than 200 mg/dl), T 200-300 and Unt 200-300 (glucose concn 200-300 mg/dl), and T greater than 300 and Unt greater than 300 (glucose concn greater than 300 mg/dl). After exercise training, hyperglycemic glucose clamps were performed in awake rats by elevation of arterial blood glucose concentration 126 mg/dl above fasting basal levels for 90 min. Exercise training significantly increased muscle citrate synthase activity. Prevailing hyperglycemia was reduced during the 10-wk exercise training period in all T rats with fed-state glucose concentrations less than 300, and only 53% of Unt rats in these groups had reduced glycemia. GSIS was significantly higher in T less than 200 [2.4 +/- 0.7 (SD) ng/ml at 90 min] than in Unt less than 200 (1.5 +/- 0.3). A similar response was found for T 200-300 (1.1 +/- 0.3 ng/dl) vs. Unt 200-300 (0.7 +/- 0.1) but not T greater than 300 (0.36 +/- 0.2) vs Unt greater than 300 (0.44 +/- 0.05). Sham-operated control rats had insulin concentrations of 6.6 +/- 1.6 ng/ml at the 90th min of the clamp. Acute exercise reduced fed-state glycemia in rats with mild-to-moderate (less than 300 mg/dl) diabetes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

14.
This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.  相似文献   

15.
Endurance exercise training promotes important metabolic adaptations, and the adipose tissue is particularly affected. The aim of this study was to investigate how endurance exercise training modulates some aspects of insulin action in isolated adipocytes and in intact adipose tissue. Male Wistar rats were submitted to daily treadmill running (1 h/day) for 7 wk. Sedentary age-matched rats were used as controls. Final body weight, body weight gain, and epididymal fat pad weight did not show any statistical differences between groups. Adipocytes from trained rats were smaller than those from sedentary rats (205 +/- 16.8 vs. 286 +/- 26.4 pl; P < 0.05). Trained rats showed decreased plasma glucose (4.9 +/- 0.13 vs. 5.3 +/- 0.07 mM; P < 0.05) and insulin levels (0.24 +/- 0.012 vs. 0.41 +/- 0.049 mM; P < 0.05) and increased insulin-stimulated glucose uptake (23.1 +/- 3.1 vs. 12.1 +/- 2.9 pmol/cm(2); P < 0.05) compared with sedentary rats. The number of insulin receptors and the insulin-induced tyrosine phosphorylation of insulin receptor-beta subunit did not change between groups. Insulin-induced tyrosine phosphorylation insulin receptor substrates (IRS)-1 and -2 increased significantly (1.57- and 2.38-fold, respectively) in trained rats. Insulin-induced IRS-1/phosphatidylinositol 3 (PI3)-kinase (but not IRS-2/PI3-kinase) association and serine Akt phosphorylation also increased (2.06- and 3.15-fold, respectively) after training. The protein content of insulin receptor-beta subunit, IRS-1 and -2, did not differ between groups. Taken together, these data support the hypothesis that the increased adipocyte responsiveness to insulin observed after endurance exercise training is modulated by IRS/PI3-kinase/Akt pathway.  相似文献   

16.
The effect of specific calorie deprivation was studied in meal-fed growing rats. It resulted in a 50% decrease in growth rate. Blood glucose and most non-essential blood free amino acid levels were depressed. Postprandial plasma insulin was decreased. With insulin ranging from 0.01 to 100 nM, insulin binding to crude Triton X-100 solubilized membranes from liver was higher in calorie restricted rats when compared with control rats. Wheat germ agglutinin (WGA) purified receptor preparations also exhibited higher insulin binding in liver from experimental group but the significance (P less than 0.05) was only visible with low insulin levels; both basal and insulin-stimulated tyrosine-kinase activity were left unchanged. In contrast, whatever the skeletal muscle insulin receptor preparation (enriched plasma membranes, crude Triton X-100 solubilized or wheat-germ agglutinin purified extracts) insulin binding was similar in control and calorie-restricted rats.  相似文献   

17.
Exercise training improves skeletal muscle insulin sensitivity in the obese Zucker rat. The purpose of this study was to investigate whether the improvement in insulin action in response to exercise training is associated with enhanced insulin receptor signaling. Obese Zucker rats were trained for 7 wk and studied by using the hindlimb-perfusion technique 24 h, 96 h, or 7 days after their last exercise training bout. Insulin-stimulated glucose uptake (traced with 2-deoxyglucose) was significantly reduced in untrained obese Zucker rats compared with lean controls (2.2 +/- 0.17 vs. 5.4 +/- 0.46 micromol x g(-1) x h(-1)). Glucose uptake was normalized 24 h after the last exercise bout (4.9 +/- 0.41 micromol x g(-1) x h(-1)) and remained significantly elevated above the untrained obese Zucker rats for 7 days. However, exercise training did not increase insulin receptor or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, phosphatidylinositol 3-kinase (PI3-kinase) activity associated with IRS-1 or tyrosine phosphorylated immunoprecipitates, or Akt serine phosphorylation. These results are consistent with the hypothesis that, in obese Zucker rats, adaptations occur during training that lead to improved insulin-stimulated muscle glucose uptake without affecting insulin receptor signaling through the PI3-kinase pathway.  相似文献   

18.
Exercise training causes a decline in basal and glucose-stimulated plasma insulin levels and improves glucose tolerance. Furthermore evidence has been presented for effects on both insulin receptors and postreceptor events. However, it is unclear how these changes affect the in vivo dose-response relationship between insulin levels and whole-body glucose utilization. The aim was to examine the effect of exercise training on this relationship and distinguish between changes in insulin sensitivity and responsiveness. Euglycemic clamps were performed in trained (ET, running 1 h/day for 7 wk), sedentary (CON), and sedentary food-restricted ( SFR ) rats. ET rats showed no increase in maximal net glucose utilization in response to insulin (ET 29.5 +/- 0.6 vs. CON 28.2 +/- 1.5 mg X kg-1 X min-1, NS), whereas insulin sensitivity was increased as indicated by the insulin concentration causing half-maximal stimulation (ED50) (49 +/- 20 for ET and 133 +/- 30 mU/l for CON). Thus 7 wk of moderate exercise training resulted in a significant shift of whole-body insulin sensitivity to place ED50 well within the physiological range of insulin concentrations. This would undoubtedly result in improved glucose disposal in the postprandial state and emphasizes the potential benefit of exercise in obesity and type II diabetes.  相似文献   

19.
Dietary restriction and physical exercise can enhance stress resistance and reduce the risk of cardiovascular disease. We investigated the effects of dietary supplementation with 2-deoxy-d-glucose (2-DG), a glucose analog that limits glucose availability at the cellular level, on cardiovascular and neuroendocrine responses to stress in rats. Young adult male Sprague-Dawley rats were implanted with telemetry probes to monitor blood pressure (BP), heart rate, body temperature, and body movements. These variables were measured at designated times during a 6-mo period in rats fed control and 2-DG-supplemented (0.4% 2-DG, fed ad libitum on a schedule of 2 days on the diet and 1 day off the diet) diets during unperturbed conditions and during and after immobilization stress or cold-water swim stress. Rats fed the 2-DG diet exhibited significant reductions in resting BP, attenuated BP responses during stress, and accelerated recovery to baseline after stress. Plasma concentrations of ACTH and corticosterone were elevated under nonstress conditions in rats fed the 2-DG diet and exhibited differential responses to single (enhanced response) and multiple (reduced response) stress sessions compared with rats fed control rat chow ad libitum. The 2-DG diet improved glucose metabolism, as indicated by decreased concentrations of blood glucose and insulin under nonstress conditions, but glucose and insulin responses to stress were maintained. We conclude that improvements in some cardiovascular risk factors and stress adaptation in rats maintained on a 2-DG-supplemented diet are associated with reduced neuroendocrine responses to the stressors.  相似文献   

20.
Food anticipatory activity (FAA) is displayed in rats when access to food is restricted to a specific time frame of their circadian phase, a behavior thought to reflect both hunger and the motivation to eat. Rats also display FAA in a feeding schedule with ad libitum access to normal chow, but limited availability of a palatable meal, which is thought to involve mainly motivational aspects. The orexigenic hormone ghrelin has been implicated in FAA in rodents with restricted access to chow. Because ghrelin plays an important role not only in the control of food intake, but also in reward, we sought to determine the role of ghrelin in anticipation to a palatable meal. Plasma ghrelin levels of non-restricted rats that anticipated chocolate correlated positively with FAA and were increased compared with chow-fed control rats. Furthermore, centrally injected ghrelin increased, whereas an antagonist of the ghrelin receptor decreased, the anticipation to chocolate. Therefore, we hypothesize that central ghrelin signaling is able to mediate the motivational drive to eat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号