首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   39篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   3篇
  2015年   15篇
  2014年   10篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   5篇
  2009年   12篇
  2008年   13篇
  2007年   19篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   15篇
  2002年   10篇
  2001年   12篇
  2000年   12篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1971年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
To analyze the underlying cellular mechanisms of adaptation to ischemia-induced apoptosis through short acidic pretreatment, i.e. acidic preconditioning (APC), Wistar rat coronary endothelial cells (EC) were exposed for 40 min to acidosis (pH 6.4) followed by a 14 h recovery period (pH 7.4) and finally treated for 2 h with simulated in vitro ischemia (glucose-free anoxia at pH 6.4). APC led to a transient activation of p38 and Akt kinases, but not of JNK and ERK1/2 kinases, which was accompanied by significant reduction of the apoptotic cell number, caspase-12/-3 cleavage and Bcl-xL overexpression. These effects of APC were completely abolished by prevention of Akt- or p38-phosphorylation during APC. Furthermore, knock-down of Bcl-xL by siRNA-transfection also abolished the anti-apoptotic effect of APC. Therefore, APC leads to protection of EC against ischemic apoptosis by activation of Akt and p38 followed by overexpression of Bcl-xL, which is a key anti-apoptotic mechanism of APC.  相似文献   
3.
4.
In order to understand the effect of global change on marine fishes, it is imperative to quantify the effects on fundamental parameters such as survival and growth. Larval survival and recruitment of the Atlantic cod (Gadus morhua) were found to be heavily impaired by end‐of‐century levels of ocean acidification. Here, we analysed larval growth among 35–36 days old surviving larvae, along with organ development and ossification of the skeleton. We combined CO2 treatments (ambient: 503 µatm, elevated: 1,179 µatm) with food availability in order to evaluate the effect of energy limitation in addition to the ocean acidification stressor. As expected, larval size (as a proxy for growth) and skeletogenesis were positively affected by high food availability. We found significant interactions between acidification and food availability. Larvae fed ad libitum showed little difference in growth and skeletogenesis due to the CO2 treatment. Larvae under energy limitation were significantly larger and had further developed skeletal structures in the elevated CO2 treatment compared to the ambient CO2 treatment. However, the elevated CO2 group revealed impairments in critically important organs, such as the liver, and had comparatively smaller functional gills indicating a mismatch between size and function. It is therefore likely that individual larvae that had survived acidification treatments will suffer from impairments later during ontogeny. Our study highlights important allocation trade‐off between growth and organ development, which is critically important to interpret acidification effects on early life stages of fish.  相似文献   
5.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
6.
The patterns of genomic divergence during ecological speciation are shaped by a combination of evolutionary forces. Processes such as genetic drift, local reduction of gene flow around genes causing reproductive isolation, hitchhiking around selected variants, variation in recombination and mutation rates are all factors that can contribute to the heterogeneity of genomic divergence. On the basis of 60 fully sequenced three-spined stickleback genomes, we explore these different mechanisms explaining the heterogeneity of genomic divergence across five parapatric lake and river population pairs varying in their degree of genetic differentiation. We find that divergent regions of the genome are mostly specific for each population pair, while their size and abundance are not correlated with the extent of genome-wide population differentiation. In each pair-wise comparison, an analysis of allele frequency spectra reveals that 25–55% of the divergent regions are consistent with a local restriction of gene flow. Another large proportion of divergent regions (38–75%) appears to be mainly shaped by hitchhiking effects around positively selected variants. We provide empirical evidence that alternative mechanisms determining the evolution of genomic patterns of divergence are not mutually exclusive, but rather act in concert to shape the genome during population differentiation, a first necessary step towards ecological speciation.  相似文献   
7.
The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity.  相似文献   
8.
Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.  相似文献   
9.

Background  

Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.  相似文献   
10.
Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS). However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP) was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day) manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号