首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional (3-D) culture of cancer cells and of normal mammalian cells in a polymeric matrix is generally a better alternate model for understanding the regulation of cancer cell proliferation and for evaluation of different anticancer drugs. A substantial amount of evidence demonstrates important differences in the behavior of cells grown in monolayer, i.e., two-dimensional (2-D), and in 3-D cultures. Cancer cells grown in 3-D culture are more resistant to cytotoxic agents than cells in 2-D culture; growth of cells in vitro in 3-D requires a suitable polymer that provides a structural scaffold for cell adhesion and growth. Many naturally derived polymers as well as synthetic polymers have been investigated as scaffolds. The aim of this review is to overview the polymeric materials of natural and synthetic origin that are of specific interest to 3-D cell cultures, and discuss the development of new polymers that should be specifically designed for 3-D culture applications.  相似文献   

2.

Background

Tissue and organ regeneration via transplantation of cell bodies in-situ has become an interesting strategy in regenerative medicine. Developments of cell carriers to systematically deliver cell bodies in the damage site have fall shorten on effectively meet this purpose due to inappropriate release control. Thus, there is still need of novel substrate to achieve targeted cell delivery with appropriate vehicles. In the present study, silicon based photovoltaic (PV) devices are used as a cell culturing substrate for the expansion of myoblast mouse cell (C2C12 cells) that offers an atmosphere for regular cell growth in vitro. The adherence, viability and proliferation of the cells on the silicon surface were examined by direct cell counting and fluorescence microscopy.

Results

It was found that on the silicon surface, cells proliferated over 7 days showing normal morphology, and expressed their biological activities. Cell culture on silicon substrate reveals their attachment and proliferation over the surface of the PV device. After first day of culture, cell viability was 88% and cell survival remained above 86% as compared to the seeding day after the seventh day. Furthermore, the DAPI staining revealed that the initially scattered cells were able to eventually build a cellular monolayer on top of the silicon substrate.

Conclusions

This study explored the biological applications of silicon based PV devices, demonstrating its biocompatibility properties and found useful for culture of cells on porous 2-D surface. The incorporation of silicon substrate has been efficaciously revealed as a potential cell carrier or vehicle in cell growth technology, allowing for their use in cell based gene therapy, tissue engineering, and therapeutic angiogenesis.  相似文献   

3.

Background

Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories.

Results

We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient.

Conclusion

This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.  相似文献   

4.
The effects of culturing hybridoma cells in a three-dimensional (3-D) poly(ethylene terephthalate) (PET) fibrous matrix on cell cycle, apoptosis, metabolism, and monoclonal antibody (MAb) production were evaluated by comparing with two-dimensional (2-D) culturing on microcarrier and multiwell plate surfaces. The percentage of cells in the G1/G0 phase increased during the long-term culturing period of approximately 4 weeks. Compared to the 2-D culture systems, cells grown in 3-D matrices had higher MAb productivity for long-term culture. Decreasing serum content in the culture medium increased both MAb productivity and apoptosis. However, the 3-D culture had a greater increase in MAb productivity and a much lower apoptotic rate than the 2-D culture, especially at 0% serum. Most cells in the 3-D fibrous matrix formed large aggregates and were smaller than cells grown on a 2-D surface or in suspension. The smaller cell size allowed cells to survive better in the high-cell-density environment. The fibrous matrix also selectively retained healthy, nonapoptotic cells. These results suggested that the 3-D fibrous matrix contributed to growth arrest, protected cells to better resist low-serum environments, and reduced apoptosis, all of which contributed to the high viable cell density and volumetric MAb productivity in the long-term 3-D culture.  相似文献   

5.
6.
Accurate cell settling velocity determination is critical for perfusion culture using a gravity settler for cell retention. We have developed a simple apparatus (a "settling column") for measuring settling velocity and have validated the procedure with 15-μm polystyrene particles with known physical properties. The measured settling velocity of the polystyrene particles is within 4% of the value obtained using the traditional Stokes' law approach. The settling velocities of three hybridoma cell lines were measured, resulting in up to twofold variation among cell lines, and the values decreased as the cell culture aged. The settling velocities of the nonviable cells were 33-50% less than the corresponding viable cells. The significant variation of settling velocities among cell populations and growth phases confirms the necessity of routine measurement of this property during long-term perfusion culture.  相似文献   

7.
Extracellular matrix-based hydrogels such as Matrigel are easy-to-use, commercially available, and offer environments for three-dimensional (3-D) cell culture that mimic native tissue. However, manipulating small volumes of these materials to produce thin-layer 3-D culture systems suitable for analysis is difficult because of air–liquid-substrate interfacial tension effects and evaporation. Here, we demonstrate two simple techniques that use standard liquid-handling tools and nontreated 96-well plates to produce uniform, thin-layer constructs for 3-D culture of cells in Matrigel. The first technique, the floating 3-D cell culture method, uses phase-separating polymers to form a barrier between the dispensed Matrigel, air, and cultureware surface to generate consistently thin hydrogels from volumes as low as 5 μL. These unanchored gels provide a useful assay for investigating airway smooth muscle cell contraction and may have future applications in studying asthma pathophysiology. The second technique, the fixed 3-D cell culture method, provides an anchored gel system for culturing noncontractile cells (e.g., neurons) where 20 μL of Matrigel is dispensed into the bottom of a well filled with culture medium to form a thin gel containing embedded cells. This technique has potential widespread applications as an accessible 3-D culture platform for high-throughput production of disease models for evaluation of novel drug therapies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2733, 2019  相似文献   

8.
Radial-flow perfusion bioreactor systems have been designed and evaluated to enable direct cell seeding into a three-dimensional (3-D) porous scaffold and subsequent cell culture for in vitro tissue reconstruction. However, one of the limitations of in vitro regeneration is the tissue necrosis that occurs at the central part of the 3-D scaffold. In the present study, tubular poly-L-lactic acid (PLLA) porous scaffolds with an optimized pore size and porosity were prepared by the lyophilization method, and the effect of different perfusion conditions on cell seeding and growth were compared with those of the conventional static culture. The medium flowed radially from the lumen toward the periphery of the tubular scaffolds. It was found that cell seeding under a radial-flow perfusion condition of 1.1 mL/cm2 x min was effective, and that the optimal flow rate for cell growth was 4.0 mL/cm2 x min. At this optimal rate, the increase in seeded cells in the perfusion culture over a period of 5 days was 7.3-fold greater than that by static culture over the same period. The perfusion cell seeding resulted in a uniform distribution of cells throughout the scaffold. Subsequently, the perfusion of medium and hence the provision of nutrients and oxygen permitted growth and maintenance of the tissue throughout the scaffold. The perfusion seeding/culture system was a much more effective strategy than the conventional system in which cells are seeded under a static condition and cultured in a bioreactor such as a spinner flask.  相似文献   

9.
Although three dimensional (3-D) cell culture systems have numerous advantages over traditional monolayer culture, the currently available 3-D cell culture media are cost-prohibitive for regular use by the majority of research laboratories. Here we show a simple system based on avian egg white that supports growth of cells in 3-D, at a significantly decreased cost. Specifically, we show that growth of immortalized human breast epithelial cells (MCF10A) in egg white-based medium results in formation of acini with hollow lumens, apoptotic clearance of the cells in the lumen, and apicobasal polarization comparable to what has been described using established 3-D culture media such as reconstituted basement membrane preparations (BM). There was no significant difference in MCF10A proliferation and acinar size between egg white and BM. We also cultured different established cell lines, oncogene-transformed MCF10A, and mouse mammary epithelial cells in egg white and BM, and observed similar morphology. In summary, our data convincingly argue that egg white can be used as a suitable alternative model for 3-D cell culture studies. We strongly believe that this simple and inexpensive method should allow researchers to perform 3-D cell culture experiments on a regular basis, and result in a dramatic increase of use of the 3-D cell culture in research. Thus, this finding lays the foundation for significantly increased, cost-effective use of 3-D cultures in cell biology.  相似文献   

10.
Human mesenchymal stem cells (hMSCs) have unique potential to develop into functional tissue constructs to replace a wide range of tissues damaged by disease or injury. While recent studies have highlighted the necessity for 3-D culture systems to facilitate the proper biological, physiological, and developmental processes of the cells, the effects of the physiological environment on the intrinsic tissue development characteristics in the 3-D scaffolds have not been fully investigated. In this study, experimental results from a 3-D perfusion bioreactor system and the static culture are combined with a mathematical model to assess the effects of oxygen transport on hMSC metabolism and proliferation in 3-D constructs grown in static and perfusion conditions. Cells grown in the perfusion culture had order of magnitude higher metabolic rates, and the perfusion culture supports higher cell density at the end of cultivation. The specific oxygen consumption rate for the constructs in the perfusion bioreactor was found to decrease from 0.012 to 0.0017 micromol/10(6) cells/h as cell density increases, suggesting intrinsic physiological change at high cell density. BrdU staining revealed the noneven spatial distribution of the proliferating cells in the constructs grown under static culture conditions compared to the cells that were grown in the perfusion system. The hypothesis that the constructs in static culture grow under oxygen limitation is supported by higher Y(L/G) in static culture. Modeling results show that the oxygen tension in the static culture is lower than that of the perfusion unit, where the cell density was 4 times higher. The experimental and modeling results show the dependence of cell metabolism and spatial growth patterns on the culture environment and highlight the need to optimize the culture parameters in hMSC tissue engineering.  相似文献   

11.
3-D cell culture models are important in cancer biology since they provide improved understanding of tumor microenvironment. We have established a 3-D culture model using HepG2 in natural collagen-based scaffold to mimic the development of small avascular tumor in vivo. Morphological characterization showed that HepG2 colonies grew within the interior of the scaffold and showed enhanced extracellular matrix deposition. High levels of cell proliferation in the outermost regions of the scaffold created a hypoxic microenvironment in the 3-D culture system, as indicated by hypoxia-inducible factor-1α stabilization, detectable by Western blotting and immunohistochemistry. Proteomic studies showed decreased expression of several mitochondrial proteins and increased expression of proteins in anaerobic glycolysis under 3-D culture compared to monolayer culture. Creatine kinase was also upregulated in 3-D culture, indicating its possible role as an important energy buffer system under hypoxic microenvironment. Increased levels of proteins in nucleotide metabolism may relate to cellular energy. Thus, our results suggest that HepG2 cells under 3-D culture adapt their energy metabolism in response to hypoxic conditions. Metabolic alterations in the 3-D culture model may relate to physiological changes relevant to development of small avascular tumor in vivo and their study may improve future therapeutic strategies.  相似文献   

12.
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.  相似文献   

13.
A method based on a surface plasmon resonance technique for detection of changes in concentration and glycosylation of proteins in cell culture supernatant is described. The method was used to analyze alpha(1)-acid glycoprotein (AGP) produced by a human hepatoma cell line (HepG2). Cell culture supernatant was injected to a BIACORE 2000 instrument and AGP was captured on the sensor chip by immobilized antibodies. The captured glycoprotein was then analyzed for content of carbohydrate epitopes using three different lectins, Aleuria aurantia lectin (AAL), Sambucus nigra agglutinin (SNA), and Triticum vulgaris agglutinin (wheat germ agglutinin, WGA). The method was used to analyze changes in concentration and glycosylation of AGP produced by HepG2 cells grown with or without three different cytokines, interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and transforming growth factor beta-1 (TGF beta(1)). Using the described method it was shown that when HepG2 cells were grown in the presence of IL-6 both AGP concentration and fucosylation increased. When HepG2 cells instead were grown in the presence of TGF beta(1) AGP fucosylation increased whereas AGP concentration decreased.  相似文献   

14.
Hepatocellular carcinoma (HCC) treatments are evaluated by two-dimensional (2D) in vitro culture systems, despite their limited ability to predict drug efficacy. The three-dimensional (3D) microporous scaffold provides the possibility of generating more reliable preclinical models to increase the efficacy of cancer treatments. The physical properties of a microporous cellulosic scaffold were evaluated. The cellulosic scaffold was biocompatible and had a highly porous network with appropriate pore size, swelling rate, and stiffness of cancer cell cultures. Cellulosic scaffolds were compared with 2D polystyrene for the culture of HepG2 and Huh7 human HCC cells. Cellulosic scaffolds promoted tumor spheroid formation. Cells cultured on scaffolds were more resistant to chemotherapy drugs and showed upregulation of EpCAM and Oct4. The migration ability of HCC cells cultured on scaffolds was significantly greater than that of cells grown in 2D cultures as evidenced by the downregulation of E-cadherin. In addition, the proportion of CD44+/CD133+ HCC cancer stem cells (CSCs) was significantly greater in cells cultured on scaffolds than in those grown in 2D cultures. These findings suggest that cellulosic scaffolds effectively mimic the in vivo tumor behavior and may serve as a platform for the study of anticancer therapeutics and liver CSCs.  相似文献   

15.
Summary Human colonic adenocarcinoma cells have been successfully grown on polystyrene microcarriers by modifying the culture conditions used in monolayer culture. The method can be divided into two culture phases: a) a phase of spreading, wherein cells were seeded in presence of serum-supplemented medium; b) a phase of active growth wherein spread cells on the beads were allowed to grow in a serum-free medium. Under these conditions, optimal spreading and growth of HT 29 and HRT 18 cells on the microcarriers were obtained. A differential propagation was observed between HT 29-D4 and HT 29-D9 cells (both clonal populations derived from HT 29 cells) on the microcarriers that is tentatively related to the discrepancy observed in the spreading efficiency of these clonal cells on serum-coated culture flasks. An index of spreading efficiency (IS index) has been defined to quantify the efficiency of spreading of each cell line on microcarriers. These data gave the opportunity to develop serum-free, scale-up methods to culture cells like HT 29 which release potentially useful products. This work was supported by CNRS (U.A. 202 and U.A. 1186), Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC), INSERM (CRE, no 847006), CNAMTS-INSERM (8386), MRT (GBM 85M0564) and l'Association pour la Recherche sur le Cancer (ARC 86-234).  相似文献   

16.
Napolitano AP  Dean DM  Man AJ  Youssef J  Ho DN  Rago AP  Lech MP  Morgan JR 《BioTechniques》2007,43(4):494, 496-494, 500
Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.  相似文献   

17.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an adhesion molecule of the immunoglobulin superfamily, has been characterized as a putative tumor suppressor because it is frequently down-regulated in aggressive types of cancer cells. Recently, however, several studies have shown that CEACAM1 actively contributes to malignant progression or migration in some types of tumor cells, suggesting that the role of CEACAM1 might be diverse among different types of cancer cells. To investigate the functional consequences of CEACAM1 expression in hepatocellular carcinoma, we analyzed the status of CEACAM1 in hepatoma cell lines HLF, PLC/PRF/5, HepG2 and KYN-2. We found that CEACAM1 was only expressed in HepG2 cells, which show a unique property for enhanced anchorage-independent growth. When HepG2 cells were treated with small interfering RNA targeted against CEACAM1, the growth rate in monolayer culture was increased. In contrast, when HepG2 cells were cultured in suspension, inhibition of CEACAM1 expression significantly decreased the growth rate, and the speed of cell-cell attachment was repressed. Hyaluronidase treatment attenuated the growth rate of HepG2 cells in suspension culture, indicating that cell-cell attachment is a requisite for anchorage-independent growth. Our data may reveal the dual role of CEACAM1 on hepatocarcinogenesis, by showing that CEACAM1 acts as a tumor suppressor in HepG2 cells in anchorage-dependent growth conditions, while in anchorage-independent growth conditions, it augments cell proliferation by potentiating the cell-cell attachment.  相似文献   

18.
We have designed and evaluated biodegradable porous polymeric microparticles as a scaffold for cell growth. The hypothesis was that microparticles with optimized composition and properties would have better cell adhesion and hence cell growth into a tissue-like structure. Solvent-evaporation method was modified using sucrose as an additive to form large porous microparticles of poly(D,L-lactic-co-glycolic) (PLGA) and polylactide (PLA) polymers. Microparticles containing hydrophilic polymers (poly(vinyl alcohol) and chitosan) incorporated in their internal matrix structure were also formulated. Different formulations of microparticles were evaluated for physical properties, cell adhesion, and cell growth in culture. PLA microparticles containing poly(vinyl alcohol) (PVA) in the matrix structure (PLA-PVA) and treated with serum prior to cell seeding demonstrated better cell adhesion and cell growth than other formulations of microparticles. Cells were seen to grow into clumps, engulfing microparticles completely with time, and forming a 3-D tissue-like structure. Cell density of 1.5 x 10(6) cells per mg of microparticles was achieved in 9 days of culture, which was a 7-fold increase from the initial seeding cell density. The mechanism of better cell growth on PLA-PVA microparticles appears to be due to the PVA associated with the internal matrix structure of microparticles. These microparticles demonstrated better wetting in culture and also cell adhesion. In addition to tissue engineering applications, microparticles with cancer cells grown into a tissue-like structure in vitro can be potentially used as a model system for preclinical evaluation of the cytotoxic effect of anticancer agents.  相似文献   

19.
Effects of synthetic auxins (2,4-D and NAA) on growth of true ginseng (Panax ginseng C.A. Mey) suspension culture and ginsenoside synthesis were investigated. Cell suspensions were grown for 6–8 subcultures on media supplemented with various phytohormones. In all media supplemented with 2,4-D and cytokinins (benzyladenine or kinetin), the cell culture showed sustained growth both in the presence and absence of casein hydrolysate. The average growth index, determined from fresh weight increment over one subculture, equaled to 5.16 ± 0.90, and the maximum mitotic index was 2%. These cell populations having cell volume of 10–17 × 104 μm3 were composed mostly (up to 60–80%) of 5-to 10-cell aggregates with unimodal distribution of nuclear DNA. These cell suspensions were suitable for isolation of protoplasts. The total average content of ginsenosides in the cell culture grown in the presence of 2,4-D constituted 0.18% of dry matter. In media supplemented with NAA, the cell growth was retarded irrespective of the cytokinin species and presence or absence of casein hydrolysate. The growth index (the ratio of final to initial fresh weights) was on average 2.15 ± 0.37, and the mitotic index did not exceed 0.13%. These suspensions, characterized by cell volume of 22–50 × 104 μm3, were composed of large aggregates (> 50 cells). The attempts to isolate protoplasts from these suspensions were unsuccessful. About 25% of cells cultured in the presence of NAA had doubled nuclear DNA content by the end of the subculture. The total content of ginsenosides in cell cultures grown with NAA was on average 4.46% of cell dry matter. The results indicate that ginsenoside synthesis depends on the extent of differentiation in the population of true ginseng cells grown in suspension culture. A certain extent of cytodifferentiation in the cell culture was observed in the presence of NAA, whereas 2,4-D supported only cell proliferation in vitro.  相似文献   

20.
Although endothelial cells are known to produce neutrotrophic factors, endothelial cell influence on growth and survival of ganglion cells has not been documented. For this reason, a long-term culture technique was modified to obtain dorsal root ganglion (DRG) cells. Cells, among them neurons, were released from clusters into the medium for more than four weeks. These cells were grown together with endothelial cells either (1) in close contact as contiguous co-culture, or (2) on porous inserts for non-contiguous co-culture, and, finally, (3) without endothelial cells for ganglion cell culture. Samples from the cultures were stained for the nuclear Ki-67-antigen to detect proliferating cells, and for neurofilaments (NF) to verify the presence of DRG cells with and without mitotic figures. The contiguous co-culture contained three times as many mitotic DRG cells as other culture set ups. Nerve growth factor had no mitotic effect on the different DRG cultures, although it supported the growth of endothelial cells. It is concluded that a subpopulation of DRG cells is easily harvested from long-term DRG cultures. These DRG cells undergo mitosis when in direct contact with endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号