首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong F  Saiman Y  Si C  Mosoian A  Bansal MB 《PloS one》2012,7(3):e33659

Background & Aims

Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the in vitro impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the in vivo expression of gp120 in HIV/HCV coinfected livers.

Methods

Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/− either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.

Results

X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.

Conclusions

X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.  相似文献   

2.

Background

Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and Findings

This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or “minibody” was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1bal in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion

This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.  相似文献   

3.
Astrocytes are susceptible to HIV-1 infection. We have recently demonstrated that human mannose receptor (hMR) is directly involved in CD4-independent HIV-1 infection of astrocytes. The apparent paradox between the vivid binding affinity of HIV-1 gp120 protein to hMR and the low efficiency of hMR-mediated HIV-1 infection raises the possibility that HIV-1 binding to hMR alone may negatively affect astrocyte function. In this study, we examined the relationship between HIV-1 interaction with hMR and the production of matrix metalloproteinases (MMPs) in astrocytes. We took advantage of an astroglial cell line U87.MR stably expressing hMR as an in vitro astrocyte model system and human primary astrocytes, and demonstrated that HIV-1 binding to astrocytes induced the production of MMP-2. This induction appeared to be most potent with M-tropic HIV-1 viruses. Increased MMP-2 production was not due to hMR-mediated HIV-1 entry and/or HIV-1 viral gene expression, as the transfection of HIV-1 proviral DNA did not result in MMP-2 production, and the infection of AT-2-treated HIV-1 viruses did not inhibit MMP-2 production. Direct involvement of hMR in HIV-induced MMP-2 production was confirmed by the inhibition of the yeast mannan, an hMR ligand antagonist, and an anti-hMR serum. Furthermore, HIV-induced MMP-2 production in astrocytes was shown to involve hMR-mediated intracellular signaling. Taken together, these results suggest that HIV-1 binding to astrocytes in the absence of HIV-1 viral entry is sufficient to alter astrocyte function through hMR-mediated intracellular signaling. In addition, these results provide new evidence to support the notion that hMR is capable of eliciting intracellular signaling upon ligand binding.  相似文献   

4.

Background

In a recent report, the carbohydrate-binding specificities of the plant lectins Galanthus nivalis (GNA) and the closely related lectin from Zea mays (GNAmaize) were determined by glycan array analysis and indicated that GNAmaize recognizes complex-type N-glycans whereas GNA has specificity towards high-mannose-type glycans. Both lectins are tetrameric proteins sharing 64% sequence similarity.

Results

GNAmaize appeared to be ~20- to 100-fold less inhibitory than GNA against HIV infection, syncytia formation between persistently HIV-1-infected HuT-78 cells and uninfected CD4+ T-lymphocyte SupT1 cells, HIV-1 capture by DC-SIGN and subsequent transmission of DC-SIGN-captured virions to uninfected CD4+ T-lymphocyte cells. In contrast to GNA, which preferentially selects for virus strains with deleted high-mannose-type glycans on gp120, prolonged exposure of HIV-1 to dose-escalating concentrations of GNAmaize selected for mutant virus strains in which one complex-type glycan of gp120 was deleted. Surface Plasmon Resonance (SPR) analysis revealed that GNA and GNAmaize interact with HIV IIIB gp120 with affinity constants (KD) of 0.33 nM and 34 nM, respectively. Whereas immobilized GNA specifically binds mannose oligomers, GNAmaize selectively binds complex-type GlcNAcβ1,2Man oligomers. Also, epitope mapping experiments revealed that GNA and the mannose-specific mAb 2G12 can independently bind from GNAmaize to gp120, whereas GNAmaize cannot efficiently bind to gp120 that contained prebound PHA-E (GlcNAcβ1,2man specific) or SNA (NeuAcα2,6X specific).

Conclusion

The markedly reduced anti-HIV activity of GNAmaize compared to GNA can be explained by the profound shift in glycan recognition and the disappearance of carbohydrate-binding sites in GNAmaize that have high affinity for mannose oligomers. These findings underscore the need for mannose oligomer recognition of therapeutics to be endowed with anti-HIV activity and that mannose, but not complex-type glycan binding of chemotherapeutics to gp120, may result in a pronounced neutralizing activity against the virus.  相似文献   

5.

Background

Listeria adhesion protein (LAP) is a housekeeping bifunctional enzyme consisting of N-terminal acetaldehyde dehydrogenase (ALDH) and C-terminal alcohol dehydrogenase (ADH). It aids Listeria monocytogenes in crossing the epithelial barrier through a paracellular route by interacting with its host receptor, heat shock protein 60 (Hsp60). To gain insight into the binding interaction between LAP and Hsp60, LAP subdomain(s) participating in the Hsp60 interaction were investigated.

Methods

Using a ModBase structural model, LAP was divided into 4 putative subdomains: the ALDH region contains N1 (Met1–Pro223) and N2 (Gly224–Gly411), and the ADH region contains C1 (Gly412–Val648) and C2 (Pro649–Val866). Each subdomain was cloned and overexpressed in Escherichia coli and purified. Purified subdomains were used in ligand overlay, immunofluorescence, and bead-based epithelial cell adhesion assays to analyze each domain''s affinity toward Hsp60 protein or human ileocecal epithelial HCT-8 cells.

Results

The N2 subdomain exhibited the greatest affinity for Hsp60 with a K D of 9.50±2.6 nM. The K D of full-length LAP (7.2±0.5 nM) to Hsp60 was comparable to the N2 value. Microspheres (1 µm diameter) coated with N2 subdomain showed significantly (P<0.05) higher binding to HCT-8 cells than beads coated with other subdomains and this binding was inhibited when HCT-8 cells were pretreated with anti-Hsp60 antibody to specifically block epithelial Hsp60. Furthermore, HCT-8 cells pretreated with purified N2 subdomain also reduced L. monocytogenes adhesion by about 4 log confirming its involvement in interaction with epithelial cells.

Conclusion

These data indicate that the N2 subdomain in the LAP ALDH domain is critical in initiating interaction with mammalian cell receptor Hsp60 providing insight into the molecular mechanism of pathogenesis for the development of potential anti-listerial control strategies.  相似文献   

6.

Background

Novel strategies are needed for the elicitation of broadly neutralizing antibodies to the HIV envelope glycoprotein, gp120. Experimental evidence suggests that combinations of antibodies that are broadly neutralizing in vitro may protect against challenge with HIV in nonhuman primates, and a small number of these antibodies have been selected by repertoire sampling of B cells and by the fractionation of antiserum from some patients with prolonged disease. Yet no additional strategies for identifying conserved epitopes, eliciting antibodies to these epitopes, and determining whether these epitopes are accessible to antibodies have been successful to date. The defining of additional conserved, accessible epitopes against which one can elicit antibodies will increase the probability that some may be the targets of broadly neutralizing antibodies.

Methodology/Principal Findings

We postulate that additional cryptic epitopes of gp120 are present, against which neutralizing antibodies might be elicited even though these antibodies are not elicited by gp120, and that many of these epitopes may be accessible to antibodies should they be formed. We demonstrate a strategy for eliciting antibodies in mice against selected cryptic, conformationally dependent conserved epitopes of gp120 by immunizing with multiple identical copies of covalently linked peptides (MCPs). This has been achieved with MCPs representing 3 different domains of gp120. We show that some cryptic epitopes on gp120 are accessible to the elicited antibodies, and some epitopes in the CD4 binding region are not accessible. The antibodies bind to gp120 with relatively high affinity, and bind to oligomeric gp120 on the surface of infected cells.

Conclusions/Significance

Immunization with MCPs comprised of selected peptides of HIV gp120 is able to elicit antibodies against conserved, conformationally dependent epitopes of gp120 that are not immunogenic when presented as gp120. Some of these cryptic epitopes are accessible to the elicited antibodies.  相似文献   

7.

Background

The RV144 clinical trial showed for the first time that vaccination could provide modest but significant protection from HIV-1 infection. To understand the protective response, and to improve upon the vaccine''s efficacy, it is important to define the structure of the immunogens used in the prime/boost regimen. Here we examined the heterogeneity in net charge, attributable to glycoform variation, of the gp120 immunogens contained in the AIDSVAX B/E vaccine.

Methodology/Principal Findings

Isoelectric focusing and glycosidase digestion were used to assess variation in net charge of the gp120s contained in the AIDSVAX B/E vaccine used in the RV144 trial. We observed 16 variants of MN-rgp120 and 24 variants of A244-rgp120. Glycoform variation in gp120 produced in Chinese hamster ovary cells was compared to glycoform variation in gp120 produced in the 293F human embryonic kidney cell line, often used for neutralization assays. We found that gp120 variants produced in CHO cells were distinctly more acidic than gp120 variants produced in 293 cells. The effect of glycoform heterogeneity on antigenicity was assessed using monoclonal antibodies. The broadly neutralizing PG9 MAb bound to A244-rgp120, but not to MN-rgp120, whether produced in CHO or in 293. However, PG9 was able to bind with high affinity to MN-rgp120 and A244-rgp120 produced in 293 cells deficient in N-acetylglucosaminyltransferase I.

Conclusions/Significance

MN- and A244-rgp120 used in the RV144 trial exhibited extensive heterogeneity in net charge due to variation in sialic acid-containing glycoforms. These differences were cell line-dependent, affected the antigenicity of recombinant envelope proteins, and may affect assays used to measure neutralization. These studies, together with recent reports documenting broadly neutralizing antibodies directed against carbohydrate epitopes of gp120, suggest that glycoform variation is a key variable to be considered in the production and evaluation of subunit vaccines designed to prevent HIV infection.  相似文献   

8.
The full-length human renal mineralocorticoid receptor (hMR) has been overproduced in Spodoptera frugiperda (Sf9) insect cells using baculovirus-mediated expression. The overproduced hMR binds aldosterone with high affinity (Kd = 1.36 nM) and has high affinity for cortisol, cortexolone, and progesterone. Immunoprecipitation and immunoblot analysis of the recombinant hMR with MR-specific antibodies reveal three major protein bands with molecular masses of 115, 119, and 125 kDa. hMR isoforms show maximal accumulation at 48 h post-infection with the recombinant baculovirus. Maximal aldosterone binding was detected at 24 h rather than at 48 h post-infection, suggesting that the assembly of hMR monomers into the nonactivated steroid-binding receptor complexes and/or their stability deteriorates after 24 h post-infection. It is estimated by specific aldosterone binding that 1.2 x 10(6) hMR molecules are expressed per Sf9 cell (equivalent to 7 pmol/mg of cytosolic protein) at 24 h post-infection. 5-Fold more receptor molecules/cell are expressed but not detected by steroid binding at 48 h post-infection as determined by immunoblot analysis. Using the MR-specific H10E anti-idiotypic monoclonal antibody, immunoprecipitation of cytosol from recombinant baculovirus-infected Sf9 cells pulse-labeled with 32Pi demonstrated for the first time that the recombinant hMR is highly phosphorylated. The hMR is expressed as 9-10 S oligomeric complexes (Stokes radii approximately 67-85 A) that are slightly heavier than the unactivated glucocorticoid receptor and can be converted to smaller 4 S receptor monomers (Stokes radii approximately 25-55 A) by elevated temperature, pH, and ionic strength. Unlike the glucocorticoid receptor, the oligomeric hMR complex can bind DNA-cellulose without prior activation. Finally, indirect immunofluorescence demonstrated that the hMR is expressed primarily as a cytoplasmic protein that can be induced to translocate to the nucleus upon treatment with hormone.  相似文献   

9.
The identification of surfactant protein A (SP-A) as an important innate immune factor of the lungs, amniotic fluid, and the vaginal tract suggests that it could play an important role during various stages of HIV disease progression and transmission. Therefore, we examined whether SP-A could bind to HIV and also had any effect on viral infectivity. Our data demonstrate that SP-A binds to HIV in a calcium-dependent manner that is inhibitable by mannose and EDTA. Affinity capture of the HIV viral lysate reveals that SP-A targets the envelope glycoprotein of HIV (gp120), which was confirmed by ELISA using recombinant gp120. Digestion of gp120 with endoglycosidase H abrogates the binding of SP-A, indicating that the high mannose structures on gp120 are the target of the collectin. Infectivity studies reveal that SP-A inhibits the infection of CD4+ T cells by two strains of HIV (BaL, IIIB) by >80%. Competition assays with CD4 and mAbs F105 and b12 suggest that SP-A inhibits infectivity by occlusion of the CD4-binding site. Studies with dendritic cells (DCs) demonstrate that SP-A enhances the binding of gp120 to DCs, the uptake of viral particles, and the transfer of virus from DCs to CD4+ T cells by >5-fold at a pH representative of the vaginal tract. Collectively, these results suggest that SP-A acts as a dual modulator of HIV infection by protecting CD4+ T cells from direct infection but enhancing the transfer of infection to CD4+ T cells mediated by DCs.  相似文献   

10.

Background

Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb) to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development.

Methodology/Principal Findings

Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth (213Bi) - 213Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs). The number of binding sites for 213Bi-2556 on the surface of the infected cells was >106. The in vivo experiments were performed in two HIV-1 mouse models – splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 µCi 213Bi-2556 group (P = 0.01). Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for 213Bi-2556.

Conclusions/Significance

We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from “self” human antigens - this approach promises high selectivity, increased efficacy and low toxicity, especially in comparison to immunotoxins.  相似文献   

11.

Background

Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin''s sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties.

Methodology/Results

The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface.

Conclusion

Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1.  相似文献   

12.
The CD4 molecule is an essential receptor for human immunodeficiency virus type 1 (HIV-1) through high-affinity interactions with the viral external envelope glycoprotein gp120. Previously, neutralizing monoclonal antibodies (MAbs) specific to the third hypervariable domain of gp120 (the V3 loop) have been thought to block HIV infection without affecting the binding of HIV particles to CD4-expressing human cells. However, here we demonstrate that this conclusion was not correct and was due to the use of soluble gp120 instead of HIV particles. Indeed, neutralizing anti-V3 loop MAbs inhibited completely the binding and entry of HIV particles into CD4+ human cells. In contrast, the binding of virus was only partially inhibited by neutralizing anti-CD4 MAbs against the gp120 binding site in CD4, which, like the anti-V3 loop MAbs, completely inhibited HIV entry and infection. Nonneutralizing control MAbs against either the V3 loop or the N or C terminus of gp120 had no significant effect on HIV binding and entry. HIV-1 particles were also found to bind human and murine cells expressing or not expressing the human CD4 molecule. Interestingly, the binding of HIV to CD4+ murine cells was inhibited by both anti-V3 and anti-CD4 MAbs, whereas the binding to human and murine CD4- cells was affected only by anti-V3 loop MAbs. The effect of anti-V3 loop neutralizing MAbs on the HIV binding to cells appears not to be the direct consequence of gp120 shedding from HIV particles or of a decreased affinity of CD4 or gp120 for binding to its surface counterpart. Taken together, our results suggest the existence of CD4-dependent and -independent binding events involved in the attachment of HIV particles to cells; in both of these events, the V3 loop plays a critical role. As murine cells lack the specific cofactor CXCR4 for HIV-1 entry, other cell surface molecules besides CD4 might be implicated in stable binding of HIV particles to cells.  相似文献   

13.
Mucosal transmission of HIV is inefficient. The virus must breach physical barriers before it infects mucosal CD4+ T cells. Low-level viral replication occurs initially in mucosal CD4+ T cells, but within days high-level replication occurs in Peyer''s patches, the gut lamina propria and mesenteric lymph nodes. Understanding the early events in HIV transmission may provide valuable information relevant to the development of an HIV vaccine. The viral quasispecies in a donor contracts through a genetic bottleneck in the recipient, such that, in low-risk settings, infection is frequently established by a single founder virus. Early-transmitting viruses in subtypes A and C mucosal transmission tend to encode gp120s with reduced numbers of N-linked glycosylation sites at specific positions throughout the V1-V4 domains, relative to typical chronically replicating isolates in the donor quasispecies. The transmission advantage gained by the absence of these N-linked glycosylation sites is unknown. Using primary α4β7 +/CD4+ T cells and a flow-cytometry based steady-state binding assay we show that the removal of transmission-associated N-linked glycosylation sites results in large increases in the specific reactivity of gp120 for integrin- α4β7. High-affinity for integrin α4β7, although not found in many gp120s, was observed in early-transmitting gp120s that we analyzed. Increased α4β7 affinity is mediated by sequences encoded in gp120 V1/V2. α4β7-reactivity was also influenced by N-linked glycosylation sites located in C3/V4. These results suggest that the genetic bottleneck that occurs after transmission may frequently involve a relative requirement for the productive infection of α4β7 +/CD4+ T cells. Early-transmitting gp120s were further distinguished by their dependence on avidity-effects to interact with CD4, suggesting that these gp120s bear unusual structural features not present in many well-characterized gp120s derived from chronically replicating viruses. Understanding the structural features that characterize early-transmitting gp120s may aid in the design of an effective gp120-based subunit vaccine.  相似文献   

14.
15.

Background

Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA) is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L) species of probiotic vaginal flora.

Principal Findings

Our results show that treatment with 100–200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki) to be ∼2.53 µM.

Significance

These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.  相似文献   

16.
There is evidence that the initial interaction between HIV-1 and the host that is essential for infection is the specific binding of the viral envelope glycoprotein, gp120, to the CD4 molecule found on certain T cells and monocytes. Most individuals infected with HIV develop antibodies against the gp120 protein. Although in vitro treatment of CD4+ T cells with mAb to a specific epitope of the CD4 molecule (T4a) blocks virus binding, syncytia formation, and infectivity, it is unclear if antibodies to gp120 from an infected individual that can inhibit the binding of gp120 to CD4 is in any way related to the clinical course of disease. Our present study characterizes the binding of 125I-labeled rgp120 to CD4+ cells, and describes an assay system that measures a potentially relevant form of immunity to HIV infection, i.e., the blocking of HIV binding to CD4+ cells. Optimal binding conditions included a 2-h incubation at 22 degrees C, 4 x 10(6) CD4+ cells, and 1 nM gp120. The dissociation constant (KD) for gp120 binding to cell surface CD4 was 5 nM, and was inhibited by soluble CD4 and by mAb to T4a but not to T3 or T4. For the binding inhibition assay, negative controls included healthy seronegatives, seronegatives with connective tissue diseases, patients with HTLV-1 disease, and patients infected with HIV-2. In studying over 100 sera, the assay was highly sensitive (98%) and specific (100%). The majority of HIV+ sera could inhibit binding at dilutions of 1/100 to 1/1000. No correlation was noted between binding inhibition (BI) titer in this assay and clinical stage of HIV infection. In addition, there was no correlation between BI titer and HIV neutralizing activity. The BI titer was correlated with the titer of anti-gp160 (r = 0.63) and the titer of anti-gp120 (r = 0.52) antibodies determined by Western blot dilution. As with neutralizing antibodies and other forms of immune response to HIV, it is unclear what role antibody blocking of HIV binding to CD4+ cells may play in active immunity to HIV in infected individuals. This activity may prove to have some value in protection against initial HIV infection and, thus, the assay may be of use in monitoring vaccine trials.  相似文献   

17.

Background

Many participants in microbicide trials remain uninfected despite ongoing exposure to HIV-1. Determining the emergence and nature of mucosal HIV-specific immune responses in such women is important, since these responses may contribute to protection and could provide insight for the rational design of HIV-1 vaccines.

Methods and Findings

We first conducted a pilot study to compare three sampling devices (Dacron swabs, flocked nylon swabs and Merocel sponges) for detection of HIV-1-specific IgG and IgA antibodies in vaginal secretions. IgG antibodies from HIV-1-positive women reacted broadly across the full panel of eight HIV-1 envelope (Env) antigens tested, whereas IgA antibodies only reacted to the gp41 subunit. No Env-reactive antibodies were detected in the HIV-negative women. The three sampling devices yielded equal HIV-1-specific antibody titers, as well as total IgG and IgA concentrations. We then tested vaginal Dacron swabs archived from 57 HIV seronegative women who participated in a microbicide efficacy trial in Southern Africa (HPTN 035). We detected vaginal IgA antibodies directed at HIV-1 Env gp120/gp140 in six of these women, and at gp41 in another three women, but did not detect Env-specific IgG antibodies in any women.

Conclusion

Vaginal secretions of HIV-1 infected women contained IgG reactivity to a broad range of Env antigens and IgA reactivity to gp41. In contrast, Env-binding antibodies in the vaginal secretions of HIV-1 uninfected women participating in the microbicide trial were restricted to the IgA subtype and were mostly directed at HIV-1 gp120/gp140.  相似文献   

18.

Background

Anti-HIV immunoconjugates targeted to the HIV envelope protein may be used to eradicate the latent reservoir of HIV infection using activate-and-purge protocols. Previous studies have identified the two target epitopes most effective for the delivery of cytotoxic immunoconjugates the CD4-binding site of gp120, and the hairpin loop of gp41. Here we construct and test tetravalent double variable domain immunoglobulin molecules (DVD-Igs) that bind to both epitopes.

Methods

Synthetic genes that encode DVD-Igs utilizing V-domains derived from human anti-gp120 and anti-gp41 Abs were designed and expressed in 293F cells. A series of constructs tested different inter-V-linker domains and orientations of the two V domains. Antibodies were tested for binding to recombinant Ag and native Env expressed on infected cells, for neutralization of infectious HIV, and for their ability to deliver cytotoxic immunoconjugates to infected cells.

Findings

The outer V-domain was the major determinant of binding and functional activity of the DVD-Ig. Function of the inner V-domain and bifunctional binding required at least 15 AA in the inter-V-domain linker. A molecular model showing the spatial orientation of the two epitopes is consistent with this observation. Linkers that incorporated helical domains (A[EAAAK]nA) resulted in more effective DVD-Igs than those based solely on flexible domains ([GGGGS]n). In general, the DVD-Igs outperformed the less effective parental antibody and equaled the activity of the more effective. The ability of the DVD-Igs to deliver cytotoxic immunoconjugates in the absence of soluble CD4 was improved over that of either parent.

Conclusions

DVD-Igs can be designed that bind to both gp120 and gp41 on the HIV envelope. DVD-Igs are effective in delivering cytotoxic immunoconjugates. The optimal design of these DVD-Igs, in which both domains are fully functional, has not yet been achieved.  相似文献   

19.
Epstein-Barr virus lacking glycoprotein gp85 cannot infect B-cells and epithelial cells. The gp85 belongs to the molecular complex required for virus invasion of B-lymphocyte or epithelial cells. Moreover, there is evidence that gp85 is necessary for virus attachment to epithelial cells. Thirty-six peptides from the entire gp85-sequence were tested in epithelial and lymphoblastoid cell line binding assays to identify gp85-regions involved in virus-cell interaction. Five of these peptides presented high binding activity to Raji, Ramos, P3HR-1, and HeLa cells, but not to erythrocytes; Raji-cell affinity constants were between 80 and 140nM. Of these five peptides, 11435 ((181)TYKRVTEKGDEHVLSLVFGK(200)), 11436 ((201)TKDLPDLRGPFSYPSLTSAQ(220)), and 11438 ((241)YFVPNLKDMFSRAVTMTAAS(260)) bound to a 65kDa protein on Raji-cell surface. These peptides and antibodies induced by them (recognising live EBV-infected cells) inhibited Epstein-Barr virus interaction with cord blood lymphocytes. It is thus probable that gp85-regions defined by peptides 11435, 11436, and 11438 are involved in EBV invasion of B-lymphocytes.  相似文献   

20.
Lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and lung infections are major causes of morbidity and mortality among HIV-infected patients even in the era of antiretroviral therapy (ART). Many of these diseases are strongly associated with smoking and smoking is more common among HIV-infected than uninfected people; however, HIV is an independent risk factor for chronic bronchitis, COPD, and asthma. The mechanism by which HIV promotes these diseases is unclear. Excessive airway mucus formation is a characteristic of these diseases and contributes to airway obstruction and lung infections. HIV gp120 plays a critical role in several HIV-related pathologies and we investigated whether HIV gp120 promoted airway mucus formation in normal human bronchial epithelial (NHBE) cells. We found that NHBE cells expressed the HIV-coreceptor CXCR4 but not CCR5 and produced mucus in response to CXCR4-tropic gp120. The gp120-induced mucus formation was blocked by the inhibitors of CXCR4, α7-nicotinic acetylcholine receptor (α7-nAChR), and γ-aminobutyric acid (GABA)AR but not the antagonists of CCR5 and epithelial growth factor receptor (EGFR). These results identify two distinct pathways (α7-nAChR-GABAAR and EGFR) for airway mucus formation and demonstrate for the first time that HIV-gp120 induces and regulates mucus formation in the airway epithelial cells through the CXCR4-α7-nAChR-GABAAR pathway. Interestingly, lung sections from HIV ± ART and simian immunodeficiency virus (SIV) ± ART have significantly more mucus and gp120-immunoreactivity than control lung sections from humans and macaques, respectively. Thus, even after ART, lungs from HIV-infected patients contain significant amounts of gp120 and mucus that may contribute to the higher incidence of obstructive pulmonary diseases in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号