首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar A  Kaundal RK  Iyer S  Sharma SS 《Life sciences》2007,80(13):1236-1244
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.  相似文献   

2.
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.  相似文献   

3.
目的:探讨外源性C肽对Ⅰ型糖尿病大鼠坐骨神经结构及功能的影响。方法:选取Wistar大鼠40只,分为正常对照组(NC组)和糖尿病组(Dia组),糖尿病组链脲佐菌素诱发大鼠成模后,再随机分为三组:糖尿病组(Dia组)、胰岛素治疗组(In组)和C肽治疗组(CP组)8周后,测定各组大鼠运动、感觉神经传导速度,并对病变大鼠的坐骨神经进行病理定量图像分析及超微结构分析,结果:1.In组、CP肽组与DM组相比:大鼠运动、感觉神经传导速度均明显增加(P〈0.01);2.腓肠神经纤维的数量和总横截面面积也显著增加(P〈0.01)。3.CP组与In组相比运动、感觉神经传导速度也显著增加(P〈0.01)。4.电镜显示:Dia组有髓神经纤维髓鞘发生分离并有无颗粒囊胞状结构聚集现象,In组有髓神经纤维髓鞘分离现象明显减轻但仍有无颗粒囊胞状结构聚集现象.而CP组有髓神经纤维结构完全接近正常组。结论:C肽在改善糖尿病大鼠的神经结构和功能方面明显优于胰岛素.  相似文献   

4.
5.
The skin’s rewarming rate of diabetic patients is used as a diagnostic tool for early diagnosis of diabetic neuropathy. At present, the relationship between microvascular changes in the skin and diabetic neuropathy is unclear in streptozotocin (STZ) diabetic rats. The aim of this study was to investigate whether the skin rewarming rate in diabetic rats is related to microvascular changes and whether this is accompanied by changes observed in classical diagnostic methods for diabetic peripheral neuropathy. Computer-assisted infrared thermography was used to assess the rewarming rate after cold exposure on the plantar skin of STZ diabetic rats’ hind paws. Peripheral neuropathy was determined by the density of intra-epidermal nerve fibers (IENFs), mechanical sensitivity, and electrophysiological recordings. Data were obtained in diabetic rats at four, six, and eight weeks after the induction of diabetes and in controls. Four weeks after the induction of diabetes, a delayed rewarming rate, decreased skin blood flow and decreased density of IENFs were observed. However, the mechanical hyposensitivity and decreased motor nerve conduction velocity (MNCV) developed 6 and 8 weeks after the induction of diabetes. Our study shows that the skin rewarming rate is related to microvascular changes in diabetic rats. Moreover, the skin rewarming rate is a non-invasive method that provides more information for an earlier diagnosis of peripheral neuropathy than the classical monofilament test and MNCV in STZ induced diabetic rats.  相似文献   

6.
Ren H  Zhou RL  Zhou CT 《生理学报》2012,64(4):469-474
The aim of the present study was to establish a minimally invasive H reflex model in mice for the benefit of the research of clinical spinal cord injury and related diseases. Minimally invasive surgery was performed in hind limb of Kunming mouse under light anesthesia. The skin was incised at the point of one-third of the distance from greater trochanter to the base of the cauda. A pair of fine copper conductors were inserted into the shallow muscle using a syringe needle. After the needles were withdrawed, the retained conductors were ligated and fixed with the tissues surrounding the sciatic nerve as the first pair of stimulating electrodes. Another pair of conductors were inserted and fixed in medial malleolus close to the tibial nerve as the second stimulating electrodes. Copper conductor was inserted passing the skin above the proximal end of the metatarsal and fixed as the recording electrode. The reference electrode was placed at the walking pad in the base of the big toe using the same method. Electromyography (EMG) was used to record M and H waves in planta pedis muscles. The stimulus was a square wave with a width of 0.2 ms and frequency of 0.3 Hz. The latency time of the M and H waves which were induced from the two pairs of stimulating electrodes was recorded. Nerve conduction velocity (NCV) was then calculated from the distance between the cathodes of the stimulating electrodes and the latency time difference of M or H waves. The result showed the achievement ratios of H reflex induction were 92.73% and 81.82% in sciatic and tibial nerves, respectively. The latency time of H wave was about 7~10 ms. Motor nerve conduction velocity (MNCV) obtained was (25.84 ± 4.70) m/s (n = 35), while sensory nerve conduction velocity (SNCV) was (31.45 ± 7.30) m/s (n = 35). The method established in the present paper is simple to practice, does slight harm to the animal, and can produce waveforms with little interference. With these advantages, the method can be applied for the study of the latency of H reflex, and it is suitable for the researches which demands good physical condition of experimental animal during H reflex study. This model can also be applied to the detection of SNCV and MNCV.  相似文献   

7.
This study aimed to investigate the functions of miR-214-3p in diabetic neuropathic rodents. The diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (STZ) in rats, and miR-214-3p was delivered via tail vein injection of lentivirus. Hot or cold stimulus tests demonstrated that STZ induced thermal hyperalgesia. Neurophysiological measurements revealed that motor and sensory nerve conduction velocity and nerve blood flow were decreased in diabetic neuropathic rats. However, the STZ-induced hyperalgesia, and reduced nerve conduction velocity and nerve blood flow were all significantly reversed by miR-214-3p administration. HE staining, TUNEL, ELISA, and immunoblotting demonstrated that STZ led to obvious pathological lesion, cell apoptosis, and inflammation in dorsal root ganglion (DRG), evidenced by altered levels of apoptosis-related protein molecules and inflammatory factors, and activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88/nuclear factor kappa B signaling. The pathological alterations in diabetic neuropathic rats in DRG were significantly ameliorated by miR-214-3p application. In addition, sodium channel protein type 3 subunit alpha isoform 1 (Nav1.3) and TLR4 were identified as targets of miR-214-3p via dual-luciferase reporter assay. MiR-214-3p may play its roles by downregulating Nav1.3 and TLR4. In summary, miR-214-3p alleviated diabetes-induced nerve injury, and pathological lesion, cell apoptosis, and inflammation in DRG by regulating Nav1.3 and TLR4 in STZ-induced rats. These findings may provide novel therapeutic targets for clinical treatment of diabetic neuropathy.  相似文献   

8.
Peroxynitrite mediated nitrosative stress, an indisputable initiator of DNA damage and overactivation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated after sensing DNA damage, are two crucial pathogenetic mechanisms in diabetic neuropathy. The intent of the present study was to investigate the effect of combination of a peroxynitrite decomposition catalyst (PDC), FeTMPyP and a PARP inhibitor, 4-ANI against diabetic peripheral neuropathy. The end points of evaluation of the study included motor nerve conduction velocity (MNCV) and nerve blood flow (NBF) for evaluating nerve functions; thermal hyperalgesia and mechanical allodynia for assessing nociceptive alterations, malondialdehyde and peroxynitrite levels to detect oxidative stress-nitrosative stress; NAD concentration in sciatic nerve to assess overactivation of PARP. Additionally immunohistochemical studies for nitrotyrosine and Poly(ADP-ribose) (PAR) was also performed. Treatment with the combination of FeTMPyP and 4-ANI led to significant improvement in nerve functions and pain parameters and also attenuated the oxidative-nitrosative stress markers. Further, the combination also reduced the overactivation of PARP as evident from increased NAD levels and decreased PAR immunopositivity in sciatic nerve microsections. Thus, it can be concluded that treatment with the combination of a PDC and PARP inhibitor attenuates alteration in peripheral nerves in diabetic neuropathy (DN).  相似文献   

9.
王国彧  董彦宏  崔静茹  刘凯  崔凯 《生物磁学》2013,(25):4913-4916
目的:探讨灯盏生脉胶囊治疗糖尿病足患者的临床效果。方法:选取76例糖尿病足患者,随机分为照组和试验组,各38例,对照组给予基础治疗与局部治疗,试验组在对照组基础上采用灯盏生脉胶囊口服治疗(每次0.36,3次/d),共30天。比较两组患者的治疗效果、下肢血管彩超评分,以及治疗前后的溃疡面积、腓神经运动神经传导速度(MNCV)、感觉神经传导速度(SNCV)和2型糖尿病生活质量评分(DMQLS)的改变。结果:试验组治疗的总有效率明显高于对照组(P〈0.05),下肢血管彩超评分疗效优于对照组(P〈0.05);溃疡面积、MNCV、SNCV的改善优于对照组(P〈0.05);DMQLS评分升高,与对照组比较,差异显著(P〈0.05)。结论:灯盏生脉胶囊治疗糖尿病足疗效确切,并能提高患者生活质量。  相似文献   

10.
Watanabe T  Miyagawa I 《Life sciences》2002,70(19):2215-2224
Diabetic cystopathy as manifested by an enlarged bladder is mainly caused by peripheral neuropathy. Long-chain fatty alcohol, which has been isolated from the Far-Eastern traditional medicinal plant, Hygrophilia erecta, Hochr., has been found to possess some neurotrophic activities on the central neuron. Cyclohexenonic long-chain fatty alcohol (FA) used in this study were synthesized in order to improve the efficiency of the molecules. The effects of this compound on peripheral nerves, however, have not yet been studied. To get more information, we evaluated the effects of this compound on peripheral nerves in streptozotocin-induced diabetic rats in terms of nerve conduction velocity and bladder function. Three experiments were performed 8 weeks after the administration of streptozotocin to 8-week-old rats: (i) motor sciatic nerve conduction (MNCV), (ii) monitoring micturition behavior in the metabolic cage, and (iii) cystometrogram under urethane anesthesia (CMG). Half of the diabetic rats were treated with FA (8 mg/kg/day, i.p.). The difference in MNCV between control rats (49.0 +/- 2.2 m/s) and untreated diabetic rats (42.4 +/- 0.5 m/s) after 8 weeks reached significance (p = 0.0183). FA-administrated diabetic rats showed an improved MNCV (45.8 +/- 1.2 m/s). We also identified a significant improvement of bladder function in these animals. The diabetic rats had a much higher maximal micturition volume per 24 hours (4.9 +/- 0.4 ml) than control animals (1.5 +/- 0.1 ml). However, the diabetic rats treated with FA had a maximal micturition volume of only 3.7 +/- 0.3 ml. Likewise, the diabetic rats had a CMG bladder capacity of 0.90 +/- 0.14 ml while the diabetic rats treated with FA had a capacity of 0.54 +/- 0.07 ml. These results indicate that cyclohexenonic long-chain fatty alcohol has a beneficial effect on peripheral neuropathy and cystopathy in streptozotocin-induced diabetic rats.  相似文献   

11.
Diabetic neuropathy is commonly observed complication in more than 50 % of type 2 diabetic patients. Histone deacetylases including SIRT1 have significant role to protect neuron from hyperglycemia induced damage. Formononetin (FMNT) is known for its effect to control hyperglycemia and also activate SIRT1. In present study, we evaluated effect of FMNT as SIRT1 activator in type 2 diabetic neuropathy. Type 2 diabetic neuropathy was induced in rats by modification of diet for 15 days using high fat diet and administration of streptozotocin (35 mg/kg/day, i. p.). FMNT treatment was initiated after confirmation of type 2 diabetes. Treatment was given for 16 weeks at 10, 20 and 40 mg/kg/day dose orally. FMNT treatment‐controlled hypoglycemia and reduced insulin resistance significantly in diabetic animals. FMNT treatment reduced oxidative stress in sciatic nerve tissue. FMNT treatment also reduced thermal hyperalgesia and mechanical allodynia significantly. It improved conduction velocity in nerve and unregulated SIRT1 and NGF expression in sciatic nerve tissue. Results of present study indicate that continuous administration of FMNT protected diabetic animals from hyperglycemia induced neuronal damage by controlling hyperglycemia and increasing SIRT1 and NGF expression in nerve tissue. Thus, FMNT can be an effective candidate for treatment of type 2 diabetic neuropathy.  相似文献   

12.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   

13.
Sorbitol, inositol and nerve conduction in diabetes   总被引:8,自引:0,他引:8  
K R Gillon  J N Hawthorne 《Life sciences》1983,32(17):1943-1947
Motor nerve conduction velocity was lower in streptozotocin-diabetic rats than in controls. Treatment with the aldose reductase inhibitor Sorbinil restored conduction velocity to normal. Diabetic rats had an increased concentration of sorbitol and reduced free inositol in sciatic nerve. Sorbinil corrected both defects. Inositol administration to diabetic rats also restored conduction velocity to normal. Genetically diabetic mice had reduced concentrations of inositol in sciatic nerve but fructose and sorbitol were normal. Glucose concentration was considerably increased.  相似文献   

14.
Astragaloside IV (AGS-IV), a new glycoside of cycloartane-type triterpene isolated from the root of Astragalus membranaceus (Fisch.) Bunge, has been used experimentally for its potent immune-stimulating, anti-inflammatory, and antioxidative actions. A recent study has shown AGS-IV to be an aldose-reductase inhibitor and a free-radical scavenger. This study examined the effects of AGS-IV on motor nerve conduction velocity (MNCV), tailflick threshold temperature, biochemical indexes, and the histology of the sural nerve after diabetes was induced in rats with 75 mg/kg streptozotocin (STZ). AGS-IV (3, 6, 12 mg/kg, twice a day) was administered by oral gavage for 12 weeks after diabetes was induced. Compared with control (nondiabetic) rats, obvious changes in physiological behaviors and a significant reduction in sciatic MNCV in diabetic rats were observed after 12 weeks of STZ administration. Morphological analysis showed that AGS-IV suppressed a decrease in myelinated fiber area, an increase in myelinated fiber density, and an increase in segmental demyelination in diabetic rats. The protective mechanism of AGS-IV involved a decrease in declining blood glucose concentration and HbA1C levels, and an increase in plasma insulin levels. AGS-IV increased the activity of glutathione peroxidase in nerves, depressed the activation of aldose reductase in erythrocytes, and decreased the accumulation of advanced glycation end products in both nerves and erythrocytes. Moreover, AGS-IV elevated Na+,K+-ATPase activity in both the nerves and erythrocytes of diabetic rats. These results indicate that AGS-IV exerts protective effects against the progression of peripheral neuropathy in STZ-induced diabetes in rats through several interrelated mechanisms.  相似文献   

15.
A comparison of sciatic nerve neuropathy in diabetic and aged rats   总被引:1,自引:0,他引:1  
Koura NH 《Folia biologica》2003,51(3-4):213-218
We compared the development of sciatic nerve neuropathy in young diabetic rats with that in non-diabetic aged rats. Diabetes was induced in six-month old rats by injection with alloxan and was moderately controlled by single daily injections of insulin. Blood insulin levels in diabetic rats were significantly reduced compared to the aged animals, and glucose was significantly higher in diabetic rats. Sciatic nerve conduction velocities were measured monthly. Both motor and sensory conduction velocities decreased in the diabetic rats to a level that was similar to those in 36-month old rats. The decreases in conduction velocities in the diabetic rats were most dramatic during months 6 through 12 of diabetes. After 6 and 12 months of diabetes, sciatic nerves were examined by electron microscopy and compared to nerves from 24- and 36-month old rats respectively. Ultrastructural changes in the sciatic nerves of diabetic rats at 6 months included disruptions of myelin and dense axoplasm. In comparison, the 24-month old rats only had distorted contours of the nerve fibres. After 12 months of diabetes, the axoplasm had large spaces and the myelin was thickened and deformed. The axoplasm of 36-month old rats was normal in appearance; however the myelin sheath was thickened and split into layers. The Schwann cells were vacuolated and irregular in shape. These observations indicate that diabetes results in the early onset of age-like changes in the sciatic nerve. It suggests that the control of hyperglycemia in humans may preserve sciatic nerve structure and function.  相似文献   

16.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. Therefore, the present study investigated the possible beneficial effect of tanshinone IIA on the impaired nerve functions displayed by a rat diabetic model. Insulin-dependent diabetes in rats was developed by a single dose of streptozotocin (STZ) at 50 mg/kg. The diabetic rats were randomly divided into four groups (n = 10 in each group), and were intraperitoneally administrated daily for 4 weeks with tanshinone IIA (20 mg/kg, 50 mg/kg and 100 mg/kg), or normal saline from the fourth day after STZ injection, respectively. At the end of tanshinone IIA administration, thermal and mechanical nociceptive threshold were determined by a hot plate test and Von Frey hairs; motor nerve conducting velocity (MNCV) was determined by an electrophysiological method; nerve blood flow (NBF) was detected using a laser Doppler flow meter; Na+,K+ATPase activity, the level of superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in sciatic nerves, and the serum total antioxidant capability were also determined. We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na+,K+ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.  相似文献   

17.
Diabetic neuropathy is the most common complication of diabetes. We examined the levels and the mRNA expression of myelin proteins in the sciatic nerves and the brains of streptozotocin-induced diabetic rats. The diabetic rats exhibited a decrease in body weight, elevation of the blood glucose level and a decrease in motor nerve conduction velocity at 2 weeks after streptozotocin injection. In the sciatic nerves of diabetic rats, the level of P0 protein and its mRNA expression were markedly reduced at 20 weeks after the injection. In the brains, the levels of proteolipid protein and myelin-associated glycoprotein and their mRNA expression were selectively decreased at 20 weeks after the injection. This affected expression of myelin proteins was found even when no histological abnormalities were detectable. Considering the functional significance of myelin proteins, this impairment of protein expression is possibly involved in the pathogenesis of diabetic neuropathy, including that in brain disorders.  相似文献   

18.
Sharma SS  Kumar A  Kaundal RK 《Life sciences》2008,82(11-12):570-576
Peripheral diabetic neuropathy is a heterogeneous group of disorders, and is known to affect 50-60% of diabetic patients. Poly (ADP-ribose) polymerase (PARP) activation has been identified as one of the key components in the pathogenesis of diabetic neuropathy. In the present study we have targeted PARP overactivation in diabetic neuropathy using a known PARP inhibitor, 4 amino 1, 8-napthalimide (4-ANI). Streptozotocin induced diabetic rats developed neuropathy within 6 weeks, which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) along with neuropathic pain and abnormal sensory perception. Six weeks after diabetes induction Sprague Dawley rats were treated with 4-ANI (3 and 10 mg/kg, p.o.) for a period of two weeks (seventh and eighth weeks). Two week treatment with 4-ANI showed improvement in nerve conduction, nerve blood flow and reduction in tail flick responses and mechanical allodynia in diabetic animals. 4-ANI also attenuated PAR immunoreactivity and NAD depletion in nerves of diabetic animals. Results of present study suggest the potential of PARP inhibitors like 4-ANI in the treatment of diabetic neuropathy.  相似文献   

19.
Motor and/or sensory conduction velocities are used to assess peripheral nervous system disorders. Although the miniature pig represents a model of choice for long-term pharmacological experimentation, no study has so far been reported on this model in relation to the measurement of nerve conduction velocities. We developed the present technique and applied it to 34 3-18-month-old Yucatan minipigs. Motor and sensory conduction velocities were measured using the anterior tibial nerve and the internal plantar nerve, a branch of the posterior tibial nerve, respectively. The nerve conduction velocity data of motor (MNCV) and sensory (SNCV) nerves, together with the amplitude of the sensory nerve signal, were logarithmically dependent on the age of the tested animals (r(2)=0.92, 0.81 and 0.76, respectively). The mean values of MNCV and SNCV were 70.9 +/- 1.1 and 67.9 +/- 0.2 m/s, respectively, at the age of 16 months for these miniature pigs. In order to validate this model, we compared it with other known models when the velocities reached a plateau at the end of the study. These values were found to be higher than those in humans or rats, but are comparable to those of the baboon, one of the best large animal models for human pathologies. Because the physiology and metabolism of the minipig resemble those of humans, and due to its long lifetime, this animal represents a good model for studying the development of neuropathology.  相似文献   

20.
Short-term trials with the antioxidant thioctic acid (TA) appear to improve neuropathic symptoms in diabetic patients, but the long-term response remains to be established. Therefore, Type 1 and Type 2 diabetic patients with symptomatic polyneuropathy were randomly assigned to three treatment regimens: (1) 2 x 600(mg of TA (TA 1200), (2) 600)mg of TA plus placebo (PLA) (TA 600) or (3) placebo and placebo (PLA). A trometamol salt solution of TA of 1200 or 600 mg or PLA was intravenously administered once daily for five consecutive days before enrolling the patients in the oral treatment phase. The study was prospective, PLA-controlled, randomized, double-blind and conducted for two years. Severity of diabetic neuropathy was assessed by the Neuropathy Disability Score (NDS) and electrophysiological attributes of the sural (sensory nerve conduction velocity (SNCV), sensory nerve action potential (SNAP)) and the tibial (motor nerve conduction velocity (MNCV), motor nerve distal latency (MNDL)) nerve. Statistical analysis was performed after independent reviewers excluded all patients with highly variable data allowing a final analysis of 65 patients (TA 1200: n = 18, TA 600: n = 27; PLA: n = 20). At baseline no significant differences were noted between the groups regarding the demographic variables and peripheral nerve function parameters for these 65 patients. Statistically significant changes after 24 months between TA and PLA were observed (mean +/- SD) for sural SNCV: +3.8 +/- 4.2 m/s in TA 1200, +3.0+/-3.0m/s in TA 600, -0.1+/-4.8m/s in PLA (p < 0.05 for TA 1200 and TA 600 vs. PLA); sural SNAP: +0.6+/-2.5 microV in TA 1200, +0.3+/-1.4 microV in TA 600, -0.7 +/- 1.5 microV in PLA (p = 0.076 for TA 1200 vs. PLA and p < 0.05 for TA 600 vs. PLA), and in tibial MNCV: +/- 1.2 +/- 3.8 m/s in TA 1200, -0.3 +/- 5.2 m/s in TA 600, 1.5 +/- 2.9 m/s in PLA (p < 0.05 for TA 1200 vs. PLA). No significant differences between the groups after 24 months were noted regarding the tibial MNDL and the NDS. We conclude that in a subgroup of patients after exclusion of patients with excessive test variability throughout the trial, TA appeared to have a beneficial effect on several attributes of nerve conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号