首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Flowering tops of Trifolium pratense L. (Fabaceae) are known for its traditional medicinal values. In present study, our aim was to investigate effect of standardized aqueous extract of flowering tops of Trifolium pratense L. on insulin resistance and SIRT1 expression in type 2 diabetic rats. Type 2 diabetes was induced by feeding high fat diet and administering low dose of streptozotocin. Diabetic animals were treated with standardized aqueous extract at three different doses. Parameters such as blood glucose, lipid profile, glycohemoglobin, insulin sensitivity, HOMA‐IR and liver glycogen content were measured. Changes in morphology and expression of SIRT1 in pancreatic tissue were measured in histopathological and immunohistological studies. Aqueous extract treatment showed reduction in hyperglycemia and improved insulin sensitivity. Extract treatment also showed reduction in formation of glycated hemoglobin and improved liver glycogen level. Histopathological study revealed protecting effect of extract in pancreatic tissue against hyperglycemia induced damage. Treatment increased expression of SIRT1 in rat pancreatic tissue. Results indicate that the aqueous extract of Trifolium pratense had beneficial role in improving insulin sensitivity and SIRT1 expression.  相似文献   

2.
Sirtuin (SIRT1) inactivation underlies the pathogenesis of insulin resistance and hyperglycaemia-associated vascular complications, but its role in diabetic neuropathy (DN) has not been yet explored. We have evaluated hyperglycaemia-induced alteration of SIRT1 signalling and the effect of isoliquiritigenin (ILQ) on SIRT1-directed AMP kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) signalling in peripheral nerves of streptozotocin (STZ) (55 mg/kg, ip)-induced diabetic rats and in high glucose (30 mM)-exposed neuro2a (N2A) cells. Diabetic rats and high glucose-exposed N2A cells showed reduction in SIRT1 expression with consequent decline in mitochondrial biogenesis and autophagy. ILQ (10 & 20 mg/kg, po) administration to diabetic rats for 2 weeks and exposure to glucose-insulted N2A cells resulted in significant SIRT1 activation with concurrent increase in mitochondrial biogenesis and autophagy. ILQ administration also enhanced NAD+/NADH ratio in peripheral sciatic nerves which explains its possible SIRT1 modulatory effect. Functional and behavioural studies show beneficial effect of ILQ as it alleviated nerve conduction and nerve blood flow deficits in diabetic rats along with improvement in behavioural parameters (hyperalgesia and allodynia). ILQ treatment to N2A cells reduced high glucose-driven ROS production and mitochondrial membrane depolarization. Further, ILQ-mediated SIRT1 activation facilitated the Nrf2-directed antioxidant signalling. Overall, results from this study suggest that SIRT1 activation by ILQ mimic effects of calorie restriction, that is, PGC-1α-mediated mitochondrial biogenesis, FOXO3a mediated stress resistance and AMPK mediated autophagy effects to counteract the multiple manifestations in experimental DN.  相似文献   

3.
Chronic hyperglycemia induces impairment of muscle growth and development of diabetes mellitus (DM). Since skeletal muscle is the major site for disposal of ingested glucose, impaired glucose metabolism causes imbalance between protein synthesis and degradation which adversely affects physical mobility.In this study, we investigated the effect of tocotrienol-rich fraction (TRF) supplementation on skeletal muscle damage in diabetic mice. Diabetes was induced by a high-fat diet with streptozotocin (STZ) injection (100 mg/kg) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose levels≥250 mg/dl), normal control (CON) and diabetic control (DMC) groups were administrated with olive oil, while TRF treatment groups were administrated with TRF (dissolved in olive oil) at low dose (100 mg/kg BW, LT) or high dose (300 mg/kg BW, HT) by oral gavage for 12 weeks.TRF supplementation ameliorated muscle atrophy, plasma insulin concentration and homeostatic model assessment estimated insulin resistance in diabetic mice. Moreover, TRF treatment up-regulated IRS-1 and Akt levels accompanied by increased translocation of GLUT4. Furthermore, TRF increased mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK in diabetic skeletal muscle. These changes were in part mechanistically explained by reduced levels of skeletal muscle proteins related to oxidative stress (4-hydroxynonenal, protein carbonyls, Nrf2 and HO-1), inflammation (NFkB, MCP-1, IL-6 and TNF-α), and apoptosis (Bax, Bcl₂ and caspase-3) in diabetic mice. Taken together, these results suggest that TRF might be useful as a beneficial nutraceutical to prevent skeletal muscle atrophy associated with diabetes by regulating insulin signaling via AMPK/SIRT1/PGC1α pathways in type 2 diabetic mice.  相似文献   

4.
The influence of varying doses of streptozotocin and preventive insulin treatment on phospholipid metabolism in sciatic nerve in vitro from diabetic rats was studied. Animals were given 30, 45, and 60 mg/kg injections of streptozotocin and 10 weeks later nerves were removed and incubated in the presence of [32P]-orthophosphate. The quantity of isotope incorporated into phosphatidylinositol-4,5-bisphosphate (PIP2) was progressively greater with increasing drug dosage, whereas uptake of label into other phospholipids was unchanged. Rats were made diabetic and within 72 h were implanted with long-acting, insulin-containing osmotic minipumps and the incorporation of [32P]orthophosphate into phospholipids of intact and epineurium-free nerves was examined 8 weeks later. For whole nerve, increased labeling in nerves from diabetic animals occurred only in PIP2 and phosphatidylinositol-4-phosphate (PIP) and was completely prevented by insulin treatment. Isotope incorporation into polyphosphoinositides was also markedly elevated (greater than or equal to 100%) in desheathed diabetic nerves, but not in nerves from insulin-treated animals. Other phospholipids in epineurium-free nerves displayed some rise in isotope uptake, but the increases were not prevented by insulin treatment and appeared unrelated to hyperglycemia. Morphological examination of nerves extended previous findings that prolonged insulin treatment produces axonal degeneration. These observations indicate that abnormal nerve polyphosphoinositide metabolism is at least in part a consequence of hyperglycemia. The metabolic alterations may be intimately involved in reduced nerve conduction velocity, which is characteristic of diabetic neuropathy.  相似文献   

5.
Abstract

Statins are lipid-lowering drugs that are widely used for treating hyperlipidemia, especially in diabetic patients. The aim of our study was to explore the effects of atorvastatin on oxidative stress and apoptosis in the sciatic nerve due to hyperglycemia. Diabetes was induced by streptozotocin. Atorvastatin was given orally for two weeks beginning from the sixth week. Microscopic examination of sciatic nerve revealed that normal tissue organization was disrupted in streptozotocin induced diabetic rats. Treatment with Atorvastatin reduced the histological damage and protected the morphological integrity of the sciatic nerve in streptozotocin induced diabetes. Increased expressions of transforming growth factor beta-1, endothelial nitric oxide synthase and TUNEL in sciatic nerve from streptozotocin induced diabetes were reduced by Atorvastatin. Atorvastatin could improve the effects of oxidative stress and apoptosis on the sciatic nerve due to diabetes.  相似文献   

6.
Diabetic peripheral neuropathy is a major chronic diabetic complication. We have previously shown that in type 1 diabetic streptozotocin-treated mice, insulin- and TNF-α co-expressing bone marrow-derived cells (BMDCs) induced by hyperglycemia travel to nerve tissues where they fuse with nerve cells, causing premature apoptosis and nerve dysfunction. Here we show that similar BMDCs also occur in type 2 diabetic high-fat diet (HFD) mice. Furthermore, we found that hyperglycemia induces the co-expression of insulin and TNF-α in c-kit+Sca-1+lineage (KSL) progenitor cells, which maintain the same expression pattern in the progeny, which in turn participates in the fusion with neurons when transferred to normoglycemic animals.  相似文献   

7.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

8.
Diabetic peripheral neuropathy is one of the most common microvascular complications that occurs with both type 1 and type 2 diabetes mellitus. It has a significant negative impact on patients’ quality of life; as it starts with loss of limbs’ sensation and may lead to lower limb amputation. This study aimed at investigating the effect of liraglutide on peripheral neuropathy in diabetic rats. Experimental diabetes was induced by single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were allocated into five groups. Two groups were given saline or liraglutide (0.8 mg/kg, s.c.). Three diabetic groups were either untreated or treated with liraglutide (0.8 mg/kg, s.c.) or pregabalin (10 mg/kg, i.p.). After 2 weeks of treatment, behavioral, biochemical, histopathological, and immunohistochemical investigations were performed. Treatment with liraglutide‐restored animals’ body weight, normalized blood glucose, decreased glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of both tail flick and hind paw cold allodynia tests and reversed histopathological alterations. Treatment with liraglutide also normalized malondialdehyde, matrix metalloproteinase‐2 and ‐9 contents in sciatic nerve. Likewise, it decreased sciatic nerve nitric oxide and interleukin‐6 contents, DNA fragmentation and expression of cyclooxygenase‐2. Meanwhile, it increased superoxide dismutase and interleukin‐10 contents in sciatic nerve. These findings indicate the neuroprotective effect of liraglutide against diabetic peripheral neuropathy probably via modulating oxidative stress, inflammation, and extracellular matrix remodeling.

  相似文献   

9.
The type 2 diabetes is one of the major global health issues that affects millions of people. This study evaluated the antidiabetic activity of aqueous extracts (AECP) and methanol extracts (MECP) from Ceiba pentandra trunk bark on an experimental model of type 2 diabetes (T2D). This model was induced in rats by the combination of a high-fat diet (HFD) and a single dose of streptozotocin (40 mg/kg, intraperitoneal) at the seventh day of experimentation. Diabetes was confirmed on day 10 by fasting blood glucose more than or equal to 200 mg/dL. Diabetic animals still under HFD were treated orally and twice daily, with MECP and AECP (75 and 150 mg/kg) or metformin (40 mg/kg) for 14 days. During the experiment, blood glucose and animal weights were determined. Oral glucose tolerance test was performed on day 15, followed by animals sacrifice for blood, liver, and pancreas collection. Total cholesterol and triglyceride levels were evaluated in plasma, whereas malondialdehyde (MDA), glutathione (GSH), superoxide dismutase, and catalase were quantified in tissue homogenates. AECP and MECP significantly reduced the hyperglycemia by up to 62% and significantly improved the oral glucose tolerance test. The impaired levels of cholesterol and triglycerides registered in diabetic control were significantly reversed by both extracts at all the doses used. Alterations in diabetic pancreas weight, GSH, and MDA were also significantly reversed by plant extracts. AECP and MECP possess type 2 antidiabetic effects that could result from their ability to improve the peripheral use of glucose, lipid metabolism or from their capacity to reduce oxidative stress. These finding provide a new avenue for better control and management of early or advanced T2D.  相似文献   

10.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. Therefore, the present study investigated the possible beneficial effect of tanshinone IIA on the impaired nerve functions displayed by a rat diabetic model. Insulin-dependent diabetes in rats was developed by a single dose of streptozotocin (STZ) at 50 mg/kg. The diabetic rats were randomly divided into four groups (n = 10 in each group), and were intraperitoneally administrated daily for 4 weeks with tanshinone IIA (20 mg/kg, 50 mg/kg and 100 mg/kg), or normal saline from the fourth day after STZ injection, respectively. At the end of tanshinone IIA administration, thermal and mechanical nociceptive threshold were determined by a hot plate test and Von Frey hairs; motor nerve conducting velocity (MNCV) was determined by an electrophysiological method; nerve blood flow (NBF) was detected using a laser Doppler flow meter; Na+,K+ATPase activity, the level of superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in sciatic nerves, and the serum total antioxidant capability were also determined. We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na+,K+ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.  相似文献   

11.
The present study investigated whether combination of resveratrol and 4-amino 1,8 naphthalimide (4-ANI) is effective in the development of diabetic neuropathy (DN). After 6 weeks of diabetes induction, rats were treated for 2 weeks with resveratrol and 4-amino 1,8 naphthalimide (4-ANI) either alone or in combination. Experimental end points included functional, behavioural and biochemical parameters along with PAR immunohistochemistry and were performed at the end of treatment. Combination of resveratrol (10 mg/kg) and 4-ANI (3 mg/kg) attenuated conduction and nerve blood flow deficits and resulted in amelioration of diabetic neuropathic pain. Significant reversal of biochemical alterations (peroxynitrite, MDA and NAD levels) were also observed, as well as PAR accumulation in the sciatic nerve. This study suggests the beneficial effect of combining resveratrol and 4-ANI in experimental diabetic neuropathy.  相似文献   

12.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.  相似文献   

13.
A comparison of sciatic nerve neuropathy in diabetic and aged rats   总被引:1,自引:0,他引:1  
Koura NH 《Folia biologica》2003,51(3-4):213-218
We compared the development of sciatic nerve neuropathy in young diabetic rats with that in non-diabetic aged rats. Diabetes was induced in six-month old rats by injection with alloxan and was moderately controlled by single daily injections of insulin. Blood insulin levels in diabetic rats were significantly reduced compared to the aged animals, and glucose was significantly higher in diabetic rats. Sciatic nerve conduction velocities were measured monthly. Both motor and sensory conduction velocities decreased in the diabetic rats to a level that was similar to those in 36-month old rats. The decreases in conduction velocities in the diabetic rats were most dramatic during months 6 through 12 of diabetes. After 6 and 12 months of diabetes, sciatic nerves were examined by electron microscopy and compared to nerves from 24- and 36-month old rats respectively. Ultrastructural changes in the sciatic nerves of diabetic rats at 6 months included disruptions of myelin and dense axoplasm. In comparison, the 24-month old rats only had distorted contours of the nerve fibres. After 12 months of diabetes, the axoplasm had large spaces and the myelin was thickened and deformed. The axoplasm of 36-month old rats was normal in appearance; however the myelin sheath was thickened and split into layers. The Schwann cells were vacuolated and irregular in shape. These observations indicate that diabetes results in the early onset of age-like changes in the sciatic nerve. It suggests that the control of hyperglycemia in humans may preserve sciatic nerve structure and function.  相似文献   

14.
Diabetic peripheral neuropathy is one the most common complications of diabetes mellitus and frequently results in clinically significant morbidities such as pain, foot ulcers and amputations. The diabetic condition progresses from early functional changes to late, poorly reversible structural changes. The chronic hyperglycemia measured alongside diabetes development is associated with significant damage and failure of various organs. In the present study diabetes was induced in male Wistar rats by a single dose of streptozotocin (STZ) and the association between the BKB1-R and the oxidative stress and Na+-K+ ATPase activity in nervous tissues was analysed. The results showed that the resulting hyperglycemia induced a reduction of the neuronal electrical function integrity and increased oxidative stress in the sciatic nerve homogenates of 30 days diabetic rats. Malondialdehyde (MDA) used as a marker of oxidative stress was elevated whereas Biological Antioxidant Potential (BAP), glutathion (GSH) levels and superoxide dismutase (SOD) activity were decreased. Treatment of the rats 3 days before the end of the 4 week period with the BKB1 antagonist R-954 restored the neuronal activity and significantly attenuated the oxidative stress as shown by the level of the various markers returning close to levels found in control rats. Our results suggest that the BKB1-R subtype is overexpressed in sciatic nerve during the STZ-induced diabetes development as evidenced by inhibitory effects of the BKB1-R antagonist R-954. The beneficial role of BKB1-R antagonist R-954 for the treatment of diabetic neuropathy is also suggested.  相似文献   

15.
Hyperglycaemia-induced oxidative stress makes an important contribution to the aetiology of diabetic neuropathy. Elevated reactive oxygen species (ROS) cause cumulative damage to neurons and Schwan cells, however, they also have a deleterious effect on nerve blood flow causing endoneurial hypoxia, which is responsible for early nerve conduction velocity (NCV) deficits and contributes to an increase in resistance to ischaemic conduction failure (RICF). We tested whether antioxidants - stobadine, vitamin E or the combination of these drugs, could prevent the early signs of neural dysfunction in animal model of diabetes in 8-9 weeks old male Wistar rats, made diabetic by streptozotocin (55 mg/kg i.v.) 4 months prior to testing. Neuropathy was evaluated electrophysiologically by measuring motor NCV and RICF of sciatic nerve in vitro. We observed that treatment with the combination of stobadine and vitamin E significantly (p < 0.001) reduced the NCV slowing in diabetic rats, although it did not fully prevent the NCV impairment. Significant effect (p < 0.05) was observed also in stobadine monotherapy. The RICF elevated in diabetic animals was not affected by any drug applied. This study confirmed that treatment with appropriate antioxidants, especially their combination could partially prevented the decrease in NCV in diabetic rats.  相似文献   

16.
To study the preventive effect of supplemented chromium picolinate (CrPic) on the development of diabetic nephropathy in mice, we analyzed the effects of CrPic supplementation on renal function and concentrations of serum glucose and tissue chromium (Cr). In experiment 1, male KK-Ay obese diabetic mice were fed either a control diet (control) or a diet supplemented with 2 mg/kg diet (Cr2) or 10 mg/kg diet (Cr10) of Cr for 12 wk. Cr10 significantly ameliorated hyperglycemia after a glucose load, creatinine clearance rates, and urinary microalbumin levels (p<0.05). In experiment 2, the Cr10 diet was fed to male KK-Ay obese diabetic mice and C57BL nondiabetic mice for 4 wk. The CrPic diet reduced urinary albumin excretion in the diabetic mice (p<0.05). Inductively coupled plasma-mass spectrometry analysis revealed that the renal Cr content and the recovery of renal Cr concentration after Cr supplementation were significantly lower in the diabetic mice than in the nondiabetic mice (p<0.01). These observations suggest that Cr supplementation of type 2 diabetic mice reduces the symptoms of hyperglycemia and improves the renal function by recovering renal Cr concentration.  相似文献   

17.
Although diabetic peripheral neuropathy (DPN) and chemotherapy-induced peripheral neuropathy (CIPN) are different disease entities, they share similar neuropathic symptoms that impede quality of life for these patients. Despite having very similar downstream effects, there have been no direct comparisons between DPN and CIPN with respect to symptom severity and therapeutic responses. We compared peripheral nerve damage due to hyperglycemia with that caused by paclitaxel (PAC) treatment as represented by biochemical parameters, diverse sensory tests, and immunohistochemistry of cutaneous and sciatic nerves. The therapeutic effects of alpha-lipoic acid and DA-9801 were also compared in the two models. Animals were divided into seven groups (n?=?7–10) as follows: normal, diabetes (DM), DM?+?alpha-lipoic acid 100?mg/kg (ALA), DM?+?DA-9801 (100?mg/kg), paclitaxel-treated rat (PAC), PAC?+?ALA (100?mg/kg), and PAC?+?DA-9801 (100?mg/kg). The sensory thresholds of animals to mechanical, heat, and pressure stimuli were altered by both hyperglycemia and PAC when compared with controls, and the responses to sensory tests were different between both groups. There were no significant differences in the biochemical markers of blood glutathione between DM and PAC groups (p?>?.05). Quantitative comparisons of peripheral nerves by intraepidermal nerve fiber density (IENFD) analysis indicated that the DM and PAC groups were similar (6.18?±?1.03 vs. 5.01?±?2.57). IENFD was significantly improved after ALA and DA-9801 treatment in diabetic animals (7.6?±?1.28, 7.7?±?1.28, respectively, p?p?>?.05). Sciatic nerves were less damaged in the PAC-treated groups compared with the DM groups with respect to axonal diameter and area (8.60?±?1.14?μm vs. 6.66?±?1.07?μm, and 59.04?±?15.16?μm2 vs. 35.71?±?11.2?μm2, respectively, p?相似文献   

18.
Kumar A  Kaundal RK  Iyer S  Sharma SS 《Life sciences》2007,80(13):1236-1244
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.  相似文献   

19.
Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy.  相似文献   

20.
Vinorine is a monoterpenoid indole alkaloid, a type of natural alkaloids. Growing reports exhibited the numerous pharmacology activities of vinorine such as anti-inflammation, anti-bacterial and anti-tumor. In this study, the effect of vinorine injection (7.5, 15 and 30 mg/kg) on motor function, sensation and nerve regeneration in sciatic nerve crush injury rat was investigated. The results of behavioral analysis, electrophysiological analysis and muscle histological analysis suggested that vinorine promoted the motor function recovery after sciatic nerve injury. The results of mechanical withdrawal thresholds assay and hot plate test demonstrated that vinorine improved the sensation recovery after sciatic nerve injury. The results of Fluoro-gold retrograde labeling, transmission electron microscope assay, toluidine blue and HE staining showed that vinorine attenuated the nerve damage caused by sciatic nerve injury and promoted the nerve regeneration. Furthermore, nerve growth factor (NGF) and its downstream extracellular signal-regulated kinase (ERK) signaling pathway participated in the neuro-recovery effect of vinorine after crush. In conclusion, vinorine treatment accelerated the sciatic nerve regeneration, motor function recovery and sensation recovery after crush injury via regulation of NGF and ERK activity. These results suggested that vinorine is a promising agent for never injury therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号