首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.  相似文献   

4.
A minimal amount of extranucleosomal DNA was required for nucleosome mobilization by ISW2 as shown by using a photochemical histone mapping approach to analyze nucleosome movement on a set of nucleosomes with varied lengths of extranucleosomal DNA. ISW2 was ineffective in repositioning or mobilizing nucleosomes with 相似文献   

5.
P J Butler 《The EMBO journal》1984,3(11):2599-2604
Earlier work on the condensation of chromatins of different repeat lengths into the 30 nm fibre has been surveyed and it is shown that the external geometry of the fibre must be the same for all the chromatins. This can only be fitted by a helical coiling of nucleosomes into a solenoid with the linker DNA disposed internally. On this basis, various models were calculated and compared with published electric dichroism data. The only good fit is found with a 'reverse-loop' model, where the linker DNA forms a complete turn into the hole of the solenoid, of opposite hand to the nucleosomal DNA superhelix. This gives a topological linking number of one per nucleosome and would resolve the 'linking number paradox' if the DNA screw is the same in chromatin as in solution. The feasibility of a reverse-loop for short linkers (down to 15 base pairs) was investigated by model building and kinks of approximately 120 degrees into both DNA grooves are described, which will allow such packing. There will, however, be a 'forbidden' range for the linker DNA length, between approximately 1 and 14 bp, corresponding to nucleosomal repeats of 163 and 176 bp.  相似文献   

6.
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.  相似文献   

7.
hMeCP2 (human methylated DNA-binding protein 2), mutations of which cause most cases of Rett syndrome (RTT), is involved in the transmission of repressive epigenetic signals encoded by DNA methylation. The present work focuses on the modifications of chromatin architecture induced by MeCP2 and the effects of RTT-causing mutants. hMeCP2 binds to nucleosomes close to the linker DNA entry-exit site and protects approximately 11 bp of linker DNA from micrococcal nuclease. MeCP2 mutants differ in this property; the R106W mutant gives very little extra protection beyond the approximately 146-bp nucleosome core, whereas the large C-terminal truncation R294X reveals wild type behavior. Gel mobility assays show that linker DNA is essential for proper MeCP2 binding to nucleosomes, and electron microscopy visualization shows that the protein induces distinct conformational changes in the linker DNA. When bound to nucleosomes, MeCP2 is in close proximity to histone H3, which exits the nucleosome core close to the proposed MeCP2-binding site. These findings firmly establish nucleosomal linker DNA as a crucial binding partner of MeCP2 and show that different RTT-causing mutations of MeCP2 are correspondingly defective in different aspects of the interactions that alter chromatin architecture.  相似文献   

8.
X-ray structure of the nucleosome core particle   总被引:2,自引:0,他引:2  
Two monoclinic crystal forms (P2(1),C2) of chicken erythrocyte nucleosomes have been under study in this laboratory. The x-ray structure of the P2(1) crystal form has been solved to 15 A resolution. The B-DNA superhelix has a relatively uniform curvature, with only several local distortions observed in the superhelix. The individual histone domains have been localized and specific contacts between each histone and the DNA can be observed. Histone contacts to the inner surface of the DNA superhelix occur predominantly at the minor groove sites. Most of the histone core is contained within the inner surface of the superhelical DNA, except for part of H2A which extends between the DNA gyres near the terminus of the DNA. No part of H2A blocks the DNA terminus or would prevent a smooth exit of the DNA into the linker region. A similar extension of a portion of histone H4 between the DNA gyres occurs close to the dyad axis. Both unique nucleosomes in the P2(1) asymmetric unit demonstrate good dyad symmetry and are similar to each other throughout the histone core and DNA regions.  相似文献   

9.
The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.  相似文献   

10.
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.  相似文献   

11.
Abstract

Two monoclinic crystal forms (P21,C2) of chicken erythrocyte nucleosomes have been under study in this laboratory. The x-ray structure of the P21 crystal form has been solved to 15 Å resolution. The B-DNA superhelix has a relatively uniform curvature, with only several local distortions observed in the superhelix. The individual histone domains have been localized and specific contacts between each histone and the DNA can be observed. Histone contacts to the inner surface of the DNA superhelix occur predominantly at the minor groove sites. Most of the histone core is contained within the inner surface of the superhelical DNA, except for part of H2A which extends between the DNA gyres near the terminus of the DNA. No part of H2A blocks the DNA terminus or would prevent a smooth exit of the DNA into the linker region. A similar extension of a portion of histone H4 between the DNA gyres occurs close to the dyad axis. Both unique nucleosomes in the P21 asymmetric unit demonstrate good dyad symmetry and are similar to each other throughout the histone core and DNA regions.  相似文献   

12.
Nucleotide sequence-directed mapping of the nucleosomes   总被引:7,自引:1,他引:6       下载免费PDF全文
The concept of sequence-dependent deformational anisotropy of DNA proposed earlier is further elaborated and a computational procedure is developed for the sequence-directed mapping of the nucleosomes along chromatin DNA nucleotide sequences. The deformational anisotropy is found to be nonuniform along the molecule of the nucleosomal DNA, suggesting that the DNA superhelix in the nucleosome is slightly oval rather than circular in projection. The number of superhelical turns in the nucleosome core particle is estimated to be 2.0 +/- 0.2. Preliminary mapping of the nucleosomes in various chromatin DNA sequences yields the distribution of linker lengths which shows several minima separated by about 10 base-pairs. This is explained by sterical exclusion effects due to overlapping of the nucleosomes in space when some specific linker lengths are chosen. The mapping procedure described is tested by comparing its results with all the most accurate experimental mapping data reported so far. The comparison demonstrates that the exact positions of all the nucleosomes appear to be determined exclusively by the nucleotide sequences.  相似文献   

13.
14.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

15.
16.
ATP-dependent chromatin remodeling has an important role in the regulation of cellular differentiation and development. For the first time, a topological view of one of these complexes has been revealed, by mapping the interactions of the catalytic subunit Isw2 with nucleosomal and extranucleosomal DNA in the complex with all four subunits of ISW2 bound to nucleosomes. Different domains of Isw2 were shown to interact with the nucleosome near the dyad axis, another near the entry site of the nucleosome, and another with extranucleosomal DNA. The conserved DEXD or ATPase domain was found to contact the superhelical location 2 (SHL2) of the nucleosome, providing a direct physical connection of ATP hydrolysis with this region of nucleosomes. The C terminus of Isw2, comprising the SLIDE (SANT-like domain) and HAND domains, was found to be associated with extranucleosomal DNA and the entry site of nucleosomes. It is thus proposed that the C-terminal domains of Isw2 are involved in anchoring the complex to nucleosomes through their interactions with linker DNA and that they facilitate the movement of DNA along the surface of nucleosomes.  相似文献   

17.
Sedimentation measurements and electron microscopy at a series of ionic strengths suggest that chromatin from neurons of the cerebral cortex is able to form condensed structures in vitro that are probably several turns of a solenoid with about six nucleosomes per turn. Since neuronal chromatin has a short nucleosomal repeat (approximately 165 bp) allowing virtually no linker DNA between nucleosomes, and yet forms apparently 'normal' elements of solenoid, the packing of nucleosomes in the solenoid must be highly constrained. This permits only a limited number of possible models, and enables tentative suggestions to be made about the location of the linker DNA in the typical solenoid.  相似文献   

18.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

19.
The binding sites for histones and high mobility group proteins (HMG) 14 and 17 have been located on DNA in the nucleosomal cores and H1/H5-containing nucleosomes. The nucleosomes were specifically associated with two molecules of the non-histone proteins HMG 14 and/or HMG 17 when followed by DNA-protein crosslinking and immunoaffinity isolation of the crosslinked HMG-DNA complexes. HMGs 14 and 17 were shown to be crosslinked in a similar manner to each core DNA strand at four sites: to both 3' and 5' DNA ends and also at distances of about 25 and 125 nucleotides from the 5' termini of the DNA. These sites are designated as HMG(143), (0), (25) and (125). The site HMG(125) is located at the place where no significant histone-DNA crosslinking was observed. The HMG(125) and HMG(25) sites lie opposite one another on the complementary DNA strands across the minor DNA groove and are placed, similarly to histones, on the inner side of the DNA superhelix in the nucleosome. The crosslinking of HMG 17 to the 3' ends of the DNA is much weaker than that of HMG 14. These data indicate that each of two molecules of HMG 14 and/or HMG 17 is bound to the double-stranded core DNA at two discrete sites: to the 3' and 5' ends of the DNA and at a distance of 20 to 25 base-pairs from each DNA terminus inside the nucleosome on a histone-free DNA region. Binding of HMG 14 or 17 does not induce any detectable rearrangement of histones on DNA and both HMGs seem to choose the same sites for attachment in nucleosomal cores and H1/H5-containing nucleosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号