首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780994篇
  免费   85695篇
  国内免费   848篇
  2018年   6913篇
  2016年   9256篇
  2015年   12968篇
  2014年   15171篇
  2013年   21662篇
  2012年   24504篇
  2011年   25336篇
  2010年   17024篇
  2009年   15540篇
  2008年   22372篇
  2007年   23406篇
  2006年   21956篇
  2005年   21023篇
  2004年   21086篇
  2003年   20117篇
  2002年   19512篇
  2001年   31809篇
  2000年   31781篇
  1999年   25459篇
  1998年   9275篇
  1997年   9547篇
  1996年   9013篇
  1995年   8915篇
  1994年   8576篇
  1993年   8594篇
  1992年   22023篇
  1991年   21694篇
  1990年   21557篇
  1989年   20980篇
  1988年   19601篇
  1987年   18511篇
  1986年   17435篇
  1985年   17749篇
  1984年   14772篇
  1983年   12699篇
  1982年   9792篇
  1981年   8848篇
  1980年   8278篇
  1979年   13967篇
  1978年   11146篇
  1977年   10252篇
  1976年   9695篇
  1975年   10870篇
  1974年   11830篇
  1973年   11586篇
  1972年   10601篇
  1971年   9697篇
  1970年   8314篇
  1969年   8227篇
  1968年   7611篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
3.
4.
5.
An insufficiently known bivalve and gastropod assemblage from the Early-Middle Miocene (Tarkhanian-Chokrakian) of northern Sinop Province (Turkey), is analyzed. Environments of the assemblage are reconstructed for the Chokrakian as subtidal, with prevailing lime and sandy bottom and good aeration, and partially well vegetated. Impoverishment of the mollusk biocoenose in this part of the marine basin (only 18 bivalve and 22 gastropod species recorded) compared to other areas, including the closest regions, Bulgaria on the west and Georgia on the east, is emphasized. The relatively low diversity of the fauna is probably connected not only with insufficient collecting, but with special hydrological conditions. A special aspect of the fauna is highlighted by the presence of the bivalve Circomphalus foliaceolamellosus subplicatus (Orb.), which is rare in the Chokrakian.  相似文献   
6.
7.
The claustrum in Cnidaria is a tissue in the gastrovascular cavity delimited by a central layer of mesoglea surrounded by gastrodermis (i.e., gastrodermis-mesoglea-gastrodermis), without communication with epidermis. By dividing the gastrovascular cavity, the four claustra provide an additional level of complexity. The presence of claustra in Cubozoa and Staurozoa has been used as evidence supporting a close relationship between these two cnidarian classes. However, the detailed anatomy of the claustrum has never been comparatively analyzed, rendering the evolution of this character among Cnidaria and its homology in Staurozoa and Cubozoa uncertain. This study provides a comparative investigation of the internal anatomy of the claustrum in Staurozoa and Cubozoa, addressing its evolutionary history based on recent phylogenetic hypotheses for Cnidaria. We conclude that the claustrum is a character exclusive to some species of Staurozoa, with a homoplastic evolution in the class, and that the structure called the “claustrum” in Cubozoa corresponds to the valve of gastric ostium, a structure at the base of the manubrium, which is also present in Staurozoa with and without claustrum. Thus, the claustrum cannot be a synapomorphy of a hypothetical clade uniting Staurozoa and Cubozoa, nor can its hypothetical presence in enigmatic fossils be used to support cubozoan affinities.  相似文献   
8.
9.
Pericytes are CD146+ perivascular cells (PCs) that have multipotential differentiation capacity as mesenchymal stem cells. Beside their crucial roles in vascular development and blood flow regulation, they have ability to differentiate into vascular cell types in vivo. These properties make pericytes preferred cells in the field of vascular tissue engineering. Culture medium for in vitro differentiation of pericytes to vascular smooth muscle cells (SMCs) has not been defined yet. The aim of this study is to try different culture media for SMC differentiation of CD146+ PCs. For this purpose, CD146+ PCs were isolated from human umbilical cord vein. Then they were characterized by immunofluorescence staining and flow cytometric analysis. Three different culture media including; (1) Transforming growth factor beta 1 (TGF-β1)+ bone morphogenic protein 4, (2) TGF-β1+ l-ascorbic acid (l-AA) and (3) Horse serum, were compared for differentiation of CD146+ PCs to SMCs by IFS and real time polymerase chain reaction. As a result, in the case of SMC differentiation of CD146+ PCs, second culture medium including TGF-β1 and l-AA was found to be more effective than other two media. These results are important for establishing proper culture conditions for in vitro SMC differentiation of CD146+ PCs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号