首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Insect pathogens, such as baculoviruses, that are used as microbial insecticides have been genetically modified to increase their speed of action. Nontarget species will often be exposed to these pathogens, and it is important to know the consequences of infection in hosts across the whole spectrum of susceptibility. Two key parameters, speed of kill and pathogen yield, are compared here for two baculoviruses, a wild-type Autographa californica nucleopolyhedrovirus (AcNPV), AcNPV clone C6, and a genetically modified AcNPV which expresses an insect-selective toxin, AcNPV-ST3, for two lepidopteran hosts which differ in susceptibility. The pathogenicity of the two viruses was equal in the less-susceptible host, Mamestra brassicae, but the recombinant was more pathogenic than the wild-type virus in the susceptible species, Trichoplusia ni. Both viruses took longer to kill the larvae of M. brassicae than to kill those of T. ni. However, whereas the larvae of T. ni were killed more quickly by the recombinant virus, the reverse was found to be true for the larvae of M. brassicae. Both viruses produced a greater yield in M. brassicae, and the yield of the recombinant was significantly lower than that of the wild type in both species. The virus yield increased linearly with the time taken for the insects to die. However, despite the more rapid speed of kill of the wild-type AcNPV in M. brassicae, the yield was significantly lower for the recombinant virus at any given time to death. A lower yield for the recombinant virus could be the result of a reduction in replication rate. This was investigated by comparing determinations of the virus yield per unit of weight of insect cadaver. The response of the two species (to both viruses) was very different: the yield per unit of weight decreased over time for M. brassicae but increased for T. ni. The implications of these data for risk assessment of wild-type and genetically modified baculoviruses are discussed.  相似文献   

2.
A cDNA clone of the gene coding for the paralytic neurotoxin (tox34) from the female straw itch mite, Pyemotes tritici, was created by RT-PCR and inserted into the genome of the Autographa californica nucleopolyhedrovirus (AcMNPV) under the control of the AcMNPV p10 promoter. This recombinant virus, AcTOX34.4, caused a rigid paralysis in infected larvae. The infectivity of AcTOX34.4 was compared to the wild-type parent strain, AcMNPV-C6, in second and fourth instar larvae of the cabbage looper, Trichoplusia ni. There were no significant differences in LD(50) values between the recombinant virus and its wild-type parent strain but, as expected, the LD(50) was lower for second instar larvae. The mean time to death and yield of occlusion bodies were measured in second and fourth instar T. ni larvae at a high (100% mortality) and low (<50% mortality) doses of the virus. The mean time to death of recombinant infected larvae was reduced by 50-60% compared to larvae infected with the wild-type strain, depending on virus dose and instar, with these larvae becoming paralysed after approximately 60 h and dying 10-20 h later. This is among the fastest speeds of kill recorded for recombinant baculoviruses. Fourth instar larvae were found to succumb to the recombinant virus more quickly than the second instar larvae. The increase in the speed of kill of the recombinant virus was accompanied by a large reduction of approximately 95% in the yield of progeny virus. The yield of virus showed a highly significant relationship with time to death, but this relationship was complex and varied between the different viruses, concentrations, and instars. The yield per unit weight of the larvae was found to be constant at a low virus dose and increased over time at a high virus dose, irrespective of instar and virus. It is predicted that these changes in the performance of the recombinant virus would act toward reducing its fitness, leading to it being outcompeted by the wild type in field situations.  相似文献   

3.
The use of baculoviruses as biological control agents is hampered by their susceptibility to inactivation by ultraviolet (UV) light. In an attempt to reduce UV inactivation, an algal virus pyrimidine dimer-specific glycosylase, cv-PDG, was expressed in the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV), and the infectivity of recombinant viruses expressing cv-PDG was measured after exposure to UV light. Expression of cv-PDG resulted in a 3-fold decrease in inactivation of budded virus by UV as measured by plaque assay in Spodoptera frugiperda Sf21 cells. However, occluded viruses expressing cv-PDG were not more resistant to UV inactivation than wild type AcMNPV when fed to either S. frugiperda or Trichoplusia ni neonate larvae. Surprisingly, however, viruses expressing cv-PDG showed a significant decrease in both the dose of occluded virus required for oral lethality and the time required for lethality compared to control virus, but these effects were only seen in S. frugiperda and not in T. ni larvae.  相似文献   

4.
Silkworm is one of the most attractive hosts for large-scale production of eukaryotic proteins as well as recombinant baculoviruses for gene transfer to mammalian cells. The bacmid system of Autographa californica nuclear polyhedrosis virus (AcNPV) has already been established and widely used. However, the AcNPV does not have a potential to infect silkworm. We developed the first practical Bombyx mori nuclear polyhedrosis virus bacmid system directly applicable for the protein expression of silkworm. By using this system, the green fluorescence protein was successfully expressed in silkworm larvae and pupae not only by infection of its recombinant virus but also by direct injection of its bacmid DNA. This method provides the rapid protein production in silkworm as long as 10 days, is free from biohazard, thus will be a powerful tool for the future production factory of recombinant eukaryotic proteins and baculoviruses.  相似文献   

5.
Genetically engineered baculoviruses, relative to their wild-type progenitors, have successfully improved the time-to-kill of these arthropod-specific biopesticides. Beneficial arthropods that prey on targeted pest insects are likely the first nontarget organisms to be adversely affected by the applications of such biopesticides. The goals of this project were to assess potential risks of the recombinant baculoviruses on Solenopsis invicta, Geocoris punctipes, and Hippodamia convergens, all of which are common predators of heliothines in Texas cotton. Four recombinant Autographa californica nuclear polyhedrosis viruses (AcNPV), one Helicoverpa zea nuclear polyhedrosis virus (HzNPV), and two corresponding wild-type NPVs were used in this risk assessment study. Risks associated with these baculoviruses were determined by possible shifts in predator life history traits (rate of food consumption, travel speed, fecundity, and survival) when fed prey infected with recombinant viruses compared to prey infected with wild-type viruses or to healthy prey. We also tested for possible transmission of these viruses by predators using the polymerase chain reaction (PCR). No significant shifts in life history characteristics were detected in predators fed Heliothis virescens larvae infected with any of the seven viruses. Viral DNA was discovered using PCR in 2.3% of fire ant workers, but not from any of the queens or eggs. In G. punctipes, 13.4% of adults and 0.5% of eggs scored positive for viruses. Twelve percent of H. convergens adults were found PCR positive. Residency in all three predators tested provides a pathway which could increase the persistence of recombinant viral particles in the environment and thus may produce an indeterminable amount of risk associated with their inadvertent movement.  相似文献   

6.
Lee Y  Fuxa JR 《Microbial ecology》2000,39(4):301-313
Abstract Wild-type and recombinant nucleopolyhedroviruses (NPVs) were compared in their capability to be transported over limited distances by the predator Podisus maculiventris (Say) and scavengers Sarcophaga bullata (Parker) and Acheta domesticus (Linnaeus) in Trichoplusia ni (Hübner) larvae infesting collards in a greenhouse microcosm. Viruses tested were variants of Autographa californica (Speyer) NPV (AcNPV): wild-type virus (AcNPV.WT), AcNPV expressing a scorpion toxin (AcNPV.AaIT), and AcNPV expressing juvenile hormone esterase (AcJHE.SG). Podisus maculiventris transported AcNPV.WT and S. bullata transported AcNPV.WT and AcNPV.AaIT. Prevalence and transport of AcNPV.WT were greater than those of AcNPV.AaIT and AcJHE.SG, regardless of whether the nontarget organism carriers were present or absent. Podisus maculiventris and S. bullata transported recombinant and wild-type NPVs at a rate of up to 62.5 cm/day, and A. domesticus transported wild-type NPV at 125 cm/day. The infected host insects, T. ni, undoubtedly contributed to viral transport in the current research. In every experiment, both the wild-type and recombinant virus spread to some degree in the plots without predators or scavengers. The relative amounts of NPVs that accumulated in soil, as indicated by bioassay mortality percentages, generally exhibited spatial patterns similar to those of T. ni mortality due to NPV on the collards plants. Thus, the predator and scavengers in the current research demonstrated some capacity to transport wild-type as well as recombinant viruses at significant rates in a greenhouse microcosm. Received: 6 December 1999; Accepted: 29 February 2000; Online Publication: 12 May 2000  相似文献   

7.
Recombinant baculoviruses have been genetically engineered to reduce the time to kill infected pests, thus reducing crop damage. In this study, wild-type viruses and recombinant viruses expressing a scorpion toxin were applied to cotton in response to larval infestations of Helicoverpa zea and Heliothis virescens in 1997 and 1998. A chemical standard and an untreated control acted as comparison treatments. The goals of this field study were to (1) assess the efficacy of recombinant baculoviruses in protecting cotton from larval feeding damage; (2) assess the impact of recombinant virus introductions on predator densities and diversity; and (3) determine if cotton predators acquire baculovirus by consuming infected heliothines. When applications were timed at larval emergence, certain recombinant virus treatments protected cotton from damage better than wild-type virus treatments and as well as the chemical standard. Differences in efficacy between recombinant and wild-type baculoviruses were not apparent if treatments were applied 3 to 4 days after peak larval emergence. Predator densities and diversity were similar among recombinant and wild-type baculovirus treatments, whereas plots treated with the chemical standard had consistently smaller predator populations. From polymerase chain reaction analyses of predators in 1997 and 1998, 1.7 and 0.2%, respectively, of predators had consumed a virus-infected heliothine. Nine of the 26 predators carrying viral DNA were positive for recombinant virus. Additionally, 13 of the 26 predators were found to disperse 13.5 to 105 m 2 to 5 days after initial virus applications. Five of these dispersing predators (0.2% of all predators evaluated) carried recombinant viral DNA. These results suggest that the potential for the inadvertent spread of recombinant viral DNA via dispersing predators is low.  相似文献   

8.
Competition between virus genotypes in insect hosts is a key element of virus fitness, affecting their long-term persistence in agro-ecosystems. Little information is available on virus competition in insect hosts or during serial passages from one cohort of hosts to the next. Here we report on the competition between two genotypes of Spodoptera exigua nucleopolyhedrovirus (SeMNPV), when serially passaged as mixtures in cohorts of 4th instar S. exigua larvae. One of the genotypes was a SeMNPV wild-type isolate, SeUS1, while the other was a SeMNPV recombinant (SeMNPV-XD1) having a greater speed of kill than SeUS1. SeXD1 lacks a suite of genes, including the ecdysteroid UDP-glucosyl transferase (egt) gene. SeXD1 expresses the green fluorescent protein (GFP) gene, enabling the identification of SeXD1 in cell culture and in insects. The relative proportion of SeUS1 and SeXD1 in successive passages of mixed infections in various ratios was determined by plaque assays of budded virus from infected larvae and by polymerase chain reactions and restriction enzyme analyses. The SeUS1 genotype outcompeted recombinant SeXD1 over successive passages. Depending on the initial virus genotype ratio, the recombinant SeXD1 was no longer detected after 6-12 passages. A mathematical model was developed to characterize the competition dynamics. Overall, the ratio SeUS1/XD1 increased by a factor 1.9 per passage. The findings suggest that under the experimental conditions recombinant SeXD1 is displaced by the wild-type strain SeUS1, but further studies are needed to ascertain that this is also the case when the same baculoviruses would be used in agro-ecosystems.  相似文献   

9.
Baculoviruses are insect pathogens with a relatively slow speed of action, and this has limited their use as control agents of insect pests. Introduction into baculoviruses of genes which code for proteins interfering specifically with insect metabolism or metamorphosis, such as toxins, hormones, and enzymes, may enhance the pathogenicity of these viruses. The complete insecticidal crystal protein gene cryIA(b) of Bacillus thuringiensis subsp. aizawai 7.21 was engineered into the nuclear polyhedrosis virus of Autographa californica (AcNPV) in place of the polyhedrin gene. In infected Spodoptera frugiperda cells, the cryIA(b) gene was expressed at a high level without interference with AcNPV production. The crystal protein was found in the cytoplasm of S. frugiperda cells, mainly as large crystals with an ultrastructure similar to that of B. thuringiensis crystals. Infected-cell extracts inhibited feeding of the large cabbage white Pieris brassicae. The toxicity of the crystal protein expressed by AcNPV recombinants was comparable with that of the crystal protein expressed by a corresponding Escherichia coli recombinant.  相似文献   

10.
Fast-acting recombinant baculoviruses have potential for improved insect pest suppression. However, the ecological impact of using such viruses must be given careful consideration. One strategy for mitigating risks might be simultaneous release of a wild-type baculovirus, so as to facilitate rapid displacement of the recombinant baculovirus by a wild-type. However, at what ratio must the two baculoviruses be released? An optimum release ratio must ensure both fast action, and the eventual competitive displacement of the recombinant virus and fixation of the wild-type baculovirus in the insect population. Here we challenged Trichoplusia ni larvae with different ratios of wild-type Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and a derived recombinant, vEGTDEL, which has the endogenous egt gene (coding for ecdysteroid UDP-glucosyltransferase) deleted. Time to death increased with the proportion wild-type virus in the inoculum mixture, although a 1:10 ratio (wild-type: recombinant) resulted in equally rapid insecticidal action as vEGTDEL alone. Five serial passages of three different occlusion body (OB) mixtures of the two viruses were also performed. OBs from 10 larval cadavers were pooled and used to initiate the following passage. Although the wild-type baculovirus was maintained over five passages, it did not go to fixation in most replicates of the serial passage experiment (SPE), and there was no good evidence for selection against the recombinant. Long-term maintenance of a recombinant in serial passage suggests an ecosystem safety risk. We conclude that for assessing ecological impact of recombinant viruses, SPEs in single and multiple larvae are relevant because of potential modulating effects at the between-host level.  相似文献   

11.
We use data from the serial passage of co-occluded recombinant Autographa californica nuclear polyhedrosis virus (AcMNPV) to estimate the viral multiplicity of infection of cells within infected insects. Co-occlusion, the incorporation of wild-type and mutant virus genomes in the same occlusion body, has been proposed as a strategy to deliver genetically modified viruses as insecticides in a way that contains their spread in the environment. It may also serve as a means whereby naturally occurring mutant forms of NPVs can be maintained in a stable polymorphism. Here, a recombinant strain of AcMNPV was constructed with a deletion of its polyhedrin gene, rendering it incapable of producing occlusion bodies (i.e., occlusion negative). This was co-occluded with wild-type AcMNPV and used to infect fifth-instar Trichoplusia ni larvae. The fate of both genotypes was monitored over several rounds of insect infection. Levels of the occlusion-negative virus genome declined slowly over successive rounds of infection. We applied these data to a model of NPV population genetics to derive an estimate of 4.3 +/- 0.3 viral genomes per occlusion body-producing cell.  相似文献   

12.
《Biological Control》2001,20(1):84-93
Wild-type Autographa californica nucleopolyhedrovirus (AcNPV or AcNPV.WT), AcNPV expressing a scorpion toxin (AcNPV.AaIT), and AcNPV expressing a mutated juvenile hormone esterase (AcJHE.SG) were compared in their capability to produce epizootics in larvae of Trichoplusia ni infesting collards in a greenhouse microcosm. Larvae treated in four different ways were released into 1.8-m2 microplots in week 1. The four treatments included (1) uninfected larvae (control), (2) 100% AcNPV.WT-infected larvae (WT), (3) 100% AcNPV.AaIT-infected larvae (AaIT), and (4) 1:1 ratio of AcNPV.WT-infected and AcNPV.AaIT-infected larvae (WT+AaIT). On a weekly basis, larvae were sampled and new, uninfected larvae were added to all plots. Sampled larvae were reared until death and then subjected individually to DNA–DNA dot-blot hybridization assay to determine the proportion of insects infected with each virus in each plot. The entire experiment was repeated with AcJHE.SG in the place of AcNPV.AaIT. Epizootics of AcNPV.WT lasted 8 weeks after a single viral release in the replicated greenhouse microplots. AcJHE.SG epizootics also lasted 8 weeks after viral release, but this virus and AcNPV.AaIT were both out-competed by AcNPV.WT. AcNPV.AaIT was no longer detected in the T. ni population by the fourth week after release. AcNPV.WT also increased to greater numbers in soil than AcNPV.AaIT or AcJHE.SG after 8 weeks. Thus, it was possible to induce 8-week epizootics of AcNPV.WT in replicated microplots under artificial greenhouse conditions, and the wild-type virus out-competed the recombinant virus for a niche in this greenhouse microcosm, which reduces the probability that the recombinant virus will persist in an agroecosystem.  相似文献   

13.
Trichoplusia ni and Spodoptera littoralis larvae were infected with a recombinant AcNPV, having the viral polyhedrin gene replaced with the cDNA encoding firefly luciferase. Both S. littoralis and T. ni synthesized very high levels of luciferase representing greater than or equal to 25% and greater than or equal to 15%, respectively of the total Coomassie blue stainable protein. Luciferase was apparently not secreted into the hemolymph but was contained within the body tissue. Expression in S. littoralis larvae suggests that luciferase can be an excellent reporter enzyme to study virus infection, dissemination and expression in different tissues, host range determination, insect physiology and also to monitor the release of recombinant virus in the environment when used as a biocide.  相似文献   

14.
15.
用形成包含体(OCC~+)并能利用人工合成启动序列和多角体XIV启动子表达外源基因的转移载体质粒pSXIVVI~+X3,将乙型肝炎病毒表面抗原(HBsAg)基因和多角体基因同时插入无包含体的粉纹夜蛾核型多角体病毒TnNPV-SVI-G基因组中,得到表达HBsAg基因又形成包含体(多角体)的重组毒侏TnNPV-HBs85-OCC~+。与利用野生型多角体启动子表达HBsAg基因的无包含体毒株TnNPV-HBsD4不同,TnNPV-HBs85-OCC~+由于具包含体,能以口服方式大规模感染粉纹夜蛾(Trichoplusia ni)幼虫,且HBsAg基因在草地夜蛾(Spodoptera frugiperda)离体细胞中的表达量要比前者高约37%,在虫体中的表达则更高。  相似文献   

16.
Deletion of the ecdysteroid UDP-glucosyltransferase gene (egt) from the Autographa californica nuclear polyhedrosis virus (AcNPV) genome increases the speed of killing of this virus (D. R. O'Reilly and L. K. Miller, Bio/Technology 9:1086-1089, 1991). Second-instar Spodoptera exigua larvae are killed more rapidly by the egt deletion mutant of AcNPV than by wild-type AcNPV. Unlike wild-type AcNPV-infected larvae, larvae infected with an egt deletion mutant molt and resume feeding as mock-infected larvae do. Wild-type AcNPV and egt deletion mutant recombinants marked with a lacZ gene were used to study their pathogenesis in insects. Histopathological investigation revealed that early degeneration of the Malpighian tubules, not the molting per se, may be the cause of this increased speed of killing by AcNPV.  相似文献   

17.
We have developed a new method for the transgenesis of the silkworm, Bombyx mori. This method couples the use of recombinant baculoviruses with the use of the piggyBac transposable element. One recombinant AcNPV, designated the helper virus, is designed to express the piggyBac transposase under the control of the Drosophila hsp70 promoter. Another recombinant AcNPV encoded the gene to be incorporated into the silkworm genome, in this case a green fluorescent protein (GFP) gene, under the control of B. mori actin A3 promoter and franked by the piggyBac inverted terminal repeats. Preblastoderm eggs were inoculated with a fine needle coated with a mixture of these two recombinant baculoviruses. Most of the inoculated larvae hatched and a high proportion of the newly hatched G0 larvae expressed the GFP marker. Transgenesis was confirmed by Southern blot analysis of G1 insects, sequencing the insertion site junctions isolated by inverse PCR, and the marker segregated in Mendelian fashion, as evidenced by the appearance of green fluorescence in G2 insects. Thus, transgenic silkworms were easily and efficiently obtained using this new method.  相似文献   

18.
The kill times of two viruses infectious to the heliothine pest complex indigenous to Texas cotton have been significantly reduced by expressing a scorpion toxin gene. Autographa californica nucleopolyhedrovirus (NPV) and Helicoverpa zea NPV express the toxin only in permissive lepidopteran hosts. The toxin, however, could indirectly harm members of upper trophic levels that feed upon and parasitize infected larvae producing the toxin. In this study, the effects of recombinant and wild-type viruses on Microplitis croceipes (Cresson) were studied in cotton using Heliothis virescens (F.) (Lepidoptera: Noctuidae) as hosts. Two recombinant viruses, their two wild-type progenitor viruses, and untreated cotton served as the five treatments of study. Larvae were previously parasitized 2 and 4 d before being confined for 72 h to cotton terminals treated with field rates of virus or left untreated. The sexes of adult M. croceipes that emerged from the recovered H. virescens larvae were determined and their head capsule widths were measured. Polymerase chain reaction (PCR) searched their extracts for virus DNA. There were no differences in percentage emergence and sex ratios of parasitoids among recombinant, wild-type, and control treatments. Significantly more wasps emerged from the 4-d cohort, but these wasps were significantly smaller than wasps from the 2-d cohort regardless of treatment. Finally, PCR found only 15-25% of the recovered H. virescens larvae and none of the emergent M. croceipes had detectable levels of viral DNA. Recombinant and wild-type viruses had a similar, minimal impact on emergent wasps, and the probability of virus dispersal via parasitoids is low in the system tested.  相似文献   

19.
Exploring the possibility of enhancing the properties of baculoviruses as biological control agents of insect pests, we tested the effect of expressing an insect gene (jhe) encoding juvenile hormone esterase. Juvenile hormone esterase inactivates juvenile hormone, which regulates the outcome of an insect molt. A cDNA encoding the juvenile hormone esterase of Heliothis virescens was inserted into the genome of Autographa californica nuclear polyhedrosis virus such that the gene was expressed under the control of a strong, modified viral promoter. This virus, however, naturally encodes an ecdysteroid UDP-glucosyltransferase which inactivates ecdysone, the hormone which initiates molting. Since ecdysteroid UDP-glucosyltransferase could mask the effects of jhe expression by blocking molting entirely, jhe-expressing viruses in which the ecdysteroid UDP-glucosyltransferase gene was deleted or disrupted were constructed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins from infected cells revealed several intracellular proteins and two major secreted proteins which reacted with antibodies to authentic juvenile hormone esterase. Western blot analysis coupled with tunicamycin treatment indicated that differential glycosylation was responsible for the multiple products. Hemolymph of recombinant virus-infected fourth-instar Trichoplusia ni larvae contained levels of juvenile hormone esterase activity 40-fold higher than maximal levels found in uninfected larvae. However, little or no difference in developmental characteristics, weight gain, or time of mortality was observed between insects infected with the jhe-expressing viruses and control viruses.  相似文献   

20.
《Gene》1997,190(1):145-150
Promoter function of the putative polyhedrin-encoding gene (polh) of Spodoptera litura nuclear polyhedrosis virus (S1MNPV) was determined by transferring it to the Autographa californica nuclear polyhedrosis virus (AcMNPV) through the AcNPV polh based vector, pVL1393. Three transfer vectors pCBT2, pCBT3 and pCBT4 were constructed by substituting the promoter and the neighbouring sequences of AcNPV in pVL1393 by that of SINPV. The Escherichia coli lacZ gene was placed downstream from the S1NPV polh promoter in the hybrid transfer vector (pCBT) constructs. Co-transfection of Spodoptera frugiperda cells (Sf9) with each of the pCBTlacZ vector and wild-type AcNPV DNAs led to synthesis of β-galactosidase (βGal). The plaque-purified recombinant viruses (S1AcNPV.lacZ) expressing lacZ under the polh promoter of S1NPV are stable. The highest βGal activity was obtained with S1AcNPV4.lacZ. Production of βGal with recombinant virus, S1AcNPV3.lacZ in which S1NPV polh promoter is in the reverse orientation in the AcNPV genome, is 83% of that produced by S1AcNPV4.lacZ. These results indicate that the S1NPV polh promoter is active in the genetic environment of AcNPV; the polh of S1NPV is phylogenetically related to AcNPV like other baculoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号