首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2Apro). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET‐based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP2) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real‐time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2Apro catalytic activity, irrespective of other viral‐encoded protease, the activated caspases or general inhibition of protein synthesis in the EV‐infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease–substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus‐induced host translation inhibition. Biotechnol. Bioeng. 2009; 104: 1142–1152. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
《Biophysical journal》2020,118(8):1820-1829
We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.  相似文献   

3.
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays a critical role in cancer cell biology by proteolytically remodeling the extracellular matrix. Utilizing fluorescence resonance energy transfer (FRET) imaging, we have developed a novel biosensor, with its sensing element anchoring at the extracellular surface of cell membrane, to visualize MT1-MMP activity dynamically in live cells with subcellular resolution. Epidermal growth factor (EGF) induced significant FRET changes in cancer cells expressing MT1-MMP, but not in MT1-MMP-deficient cells. EGF-induced FRET changes in MT1-MMP-deficient cells could be restored after reconstituting with wild-type MT1-MMP, but not MMP-2, MMP-9, or inactive MT1-MMP mutants. Deletion of the transmembrane domain in the biosensor or treatment with tissue inhibitor of metalloproteinase-2, a cell-impermeable MT1-MMP inhibitor, abolished the EGF-induced FRET response, indicating that MT1-MMP acts at the cell surface to generate FRET changes. In response to EGF, active MT1-MMP was directed to the leading edge of migrating cells along micropatterned fibronectin stripes, in tandem with the local accumulation of the EGF receptor, via a process dependent upon an intact cytoskeletal network. Hence, the MT1-MMP biosensor provides a powerful tool for characterizing the molecular processes underlying the spatiotemporal regulation of this critical class of enzymes.  相似文献   

4.
Deubiquitinating enzymes (DUBs) proteolytically cleave ubiquitin from ubiquitinated proteins, and inhibition of DUBs that rescue oncogenic proteins from proteasomal degradation is of emerging therapeutic interest. Recently, USP2 and UCH37 have been shown to deubiquitinate tumor-growth-promoting proteins, and other DUBs have been shown to be overexpressed in cancer cells. Therefore inhibition of DUBs is of interest as a potential therapeutic strategy for treating cancer. DUBs require the presence of properly folded ubiquitin protein in the substrate for efficient proteolysis, which precludes the use of synthetic peptide substrates in DUB activity assays. Because of the requirement for full-length ubiquitin, substrates suitable for use in fluorescent assays to identify or study DUB inhibitors have been difficult to prepare. We describe the development of a time-resolved fluorescence resonance energy transfer (FRET)-based DUB substrate that incorporates full-length ubiquitin that is site-specifically labeled using genetically encoded yellow fluorescent protein (YFP) and a chemically attached terbium donor. The intact substrate shows a high degree of FRET between terbium and YFP, whereas DUB-dependent cleavage leads to a decrease in FRET.  相似文献   

5.
The human beta-secretase, BACE, plays a key role in the generation of pathogenic amyloid beta-peptide (Abeta) in Alzheimer's disease and has been identified as an ideal target for therapy. Previous studies reported the monitoring of BACE activity in vitro utilizing chemical synthesized sensors. Here we describe the first genetically encoded FRET probe that can detect BACE activity in vivo. The FRET probe was constructed with the BACE substrate site (BSS) and two mutated green fluorescent proteins. In living cell, the FRET probe was directed to the secretory pathway and anchored on the cell surface to measure BACE enzymatic activity. The results show that the FRET probe can be cleaved by BACE effectively in vivo, suggesting that the probe can be used for real-time monitoring of BACE activity. This assay provides a novel platform for BACE inhibitor screening in vivo.  相似文献   

6.
Matrix metalloproteinases (MMPs) remodel tumor microenvironment and promote cancer metastasis. Among the MMP family proteases, the proteolytic activity of the pro-tumorigenic and pro-metastatic membrane-type 1 (MT1)-MMP constitutes a promising and targetable biomarker of aggressive cancer tumors. In this study, we systematically developed and characterized several highly sensitive and specific biosensors based on fluorescence resonant energy transfer (FRET), for visualizing MT1-MMP activity in live cells. The sensitivity of the AHLR-MT1-MMP biosensor was the highest and five times that of a reported version. Hence, the AHLR biosensor was employed to quantitatively profile the MT1-MMP activity in multiple breast cancer cell lines, and to visualize the spatiotemporal MT1-MMP activity simultaneously with the underlying collagen matrix at the single cell level. We detected a significantly higher level of MT1-MMP activity in invasive cancer cells than those in benign or non-invasive cells. Our results further show that the high MT1-MMP activity was stimulated by the adhesion of invasive cancer cells onto the extracellular matrix, which is precisely correlated with the cell’s ability to degrade the collagen matrix. Thus, we systematically optimized a FRET-based biosensor, which provides a powerful tool to detect the pro-invasive MT1-MMP activity at single cell levels. This readout can be applied to profile the invasiveness of single cells from clinical samples, and to serve as an indicator for screening anti-cancer inhibitors.  相似文献   

7.
We demonstrate theoretically and experimentally the quantification of Förster resonance energy transfer (FRET) by direct and systematic saturation of the excited state of acceptor molecules. This version of acceptor depletion methods for FRET estimation, denoted as “satFRET” is reversible and suitable for time-resolved measurements. The technique was investigated theoretically using the steady-state solution of the differential equation system of donor and acceptor molecular states. The influence of acceptor photobleaching during measurement was included in the model. Experimental verification was achieved with the FRET-pair Alexa 546- Alexa 633 loaded on particles in different stoichiometries and measured in a confocal microscope. Estimates of energy transfer efficiency by excited state saturation were compared to those obtained by measurements of sensitised emission and acceptor photobleaching. The results lead to a protocol that allows time-resolved FRET measurements of fixed and living cells on a conventional confocal microscope. This procedure was applied to fixed Chinese hamster ovary cells containing a cyan fluorescent protein and yellow fluorescent protein pair. The time resolution of the technique was demonstrated in a live T cell activation assay comparing the FRET efficiencies measured using a genetically encoded green and red fluorescent protein biosensor for GTP/GDP turnover to those measured by acceptor photobleaching of fixed cells.  相似文献   

8.

Background

Molecular oxygen (O2) is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues.

Results

We developed a genetically encoded F?rster resonance energy transfer (FRET)-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen) consists of the yellow fluorescent protein (YFP) that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP). Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation.

Conclusions

FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (patho)physiological processes in living cells.  相似文献   

9.
A biosensor that is portable and permits on-site analysis of samples would significantly reduce the large economical burden of food products recalls. A fiber optic portable biosensor utilizing the principle of fluorescence resonance energy transfer (FRET) was developed for fast detection of Salmonella typhimurium (S. typhimurium) in ground pork samples. Labeled antibody-protein G complexes were formed via the incubation of anti-Salmonella antibodies labeled with FRET donor fluorophores (Alexa Fluor 546) and protein G (PG) labeled with FRET acceptor fluorophores (Alexa Fluor 594). Utilizing silanization, the labeled antibodies-PG complexes were then immobilized on decladded, tapered silica fiber cores to form the evanescent wave-sensing region. The biosensors were tested in two different solutions: (1) PBS doped with S. typhimurium and (2) homogenized pork sample with S. typhimurium. The fiber probes tested in a S. typhimurium doped phosphate buffered solution demonstrated the feasibility of the biosensor for detecting S. typhimurium as well as determined the optimal packing density of the labeled antibody-PG complexes on the surface of fibers. The results showed that a packing density of 0.033 mg/ml produced the lowest limit of detection of 10(3)cells/ml with 8.2% change in fluorescence. The fiber probes placed in homogenized pork samples inoculated with S. typhimurium showed a limit of detection of 10(5)CFU/g with a 6.67% in fluorescence within a 5-min response time. These results showed that the FRET-based fiber optic biosensor can become a useful analytical tool for detection of S. typhimurium in real food samples.  相似文献   

10.
Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized.  相似文献   

11.
Protein kinase dynamics play key roles in regulation of cell differentiation, growth, development and in diverse cell signaling networks. Protein kinase sensors enable visualization of protein kinase activity in living cells and tissues in time and space. These sensors have therefore become important and powerful molecular tools for investigation of diverse kinase activities and can resolve long-standing and challenging biological questions. In the present Update, we review new advanced approaches for genetically encoded protein kinase biosensor designs developed in animal systems together with the basis of each biosensor’s working principle and components. In addition, we review recent first examples of real time plant protein kinase activity biosensor development and application. We discuss how these sensors have helped to resolve how stomatal signal transduction in response to elevated CO2 merges with abscisic acid signaling downstream of a resolved basal SnRK2 kinase activity in guard cells. Furthermore, recent advances, combined with the new strategies described in this Update, can help deepen the understanding of how signaling networks regulate unique functions and responses in distinct plant cell types and tissues and how different stimuli and signaling pathways can interact.

New genetically encoded biosensor design approaches and visualization of protein kinase activity in living plant cells and tissues in time and space are reviewed.  相似文献   

12.
We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased five times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.  相似文献   

13.
Signals transduced by kinases depend on the extent and duration of substrate phosphorylation. We generated genetically encoded fluorescent reporters for PKC activity that reversibly respond to stimuli activating PKC. Specifically, phosphorylation of the reporter expressed in mammalian cells causes changes in fluorescence resonance energy transfer (FRET), allowing real time imaging of phosphorylation resulting from PKC activation. Targeting of the reporter to the plasma membrane, where PKC is activated, reveals oscillatory phosphorylation in HeLa cells in response to histamine. Each oscillation in substrate phosphorylation follows a calcium oscillation with a lag of approximately 10 s. Novel FRET-based reporters for PKC translocation, phosphoinositide bisphosphate conversion to IP3, and diacylglycerol show that in HeLa cells the oscillatory phosphorylations correlate with Ca2+-controlled translocation of conventional PKC to the membrane without oscillations of PLC activity or diacylglycerol. However, in MDCK cells stimulated with ATP, PLC and diacylglycerol fluctuate together with Ca2+ and phosphorylation. Thus, specificity of PKC signaling depends on the local second messenger-controlled equilibrium between kinase and phosphatase activities to result in strict calcium-controlled temporal regulation of substrate phosphorylation.  相似文献   

14.
Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP) experiments, we have developed a finite element (FE) method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2)/sec) than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2)/sec and outside: 0.18+/-0.02 microm(2)/sec). The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF) stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.  相似文献   

15.
Fluorescence probes based on the principle of Förster resonance energy transfer (FRET) have shed new light on our understanding of signal transduction cascades. Among them, unimolecular FRET probes containing fluorescence proteins are rapidly increasing in number because these genetically encoded probes can be easily loaded into living cells and allow simple acquisition of FRET images. We have developed probes for small GTPases, tyrosine kinases, serine–threonine kinases and phosphoinositides. Images obtained with these probes have revealed that membrane protrusions such as nascent lamellipodia or neurites provide an active signalling platform in the growth factor-stimulated cells.  相似文献   

16.
基于GFP的FRET应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白(GFP)是一种活性荧光标记,已被用来研究基因表达、分子定位,蛋白质折叠和转运;荧光共振能量转移(FRET)是一种无损伤的光学检测方法,能检测到小于纳米的距离变化。将GFP的活性定位标记功能与FRET的高分辨率相结合。为活体研究生物分子的功能和命运开创了新的篇章。作者在介绍GFP和FRET原理的基础上,综述了基于GFP的FRET在蛋白酶活性,蛋白质间相互作用 构象改变研究中的应用。  相似文献   

17.
We have been investigating a fluorescence dual binding biosensor to detect calpastatin. Calpastatin is a protein found in meat and it is a regulator of meat tenderness. The ability to accurately predict the calpastatin concentration of beef with a biological sensor at the time of grading would lead to a more accurate assessment of the overall palatability of beef when it reaches the consumer. Meat can then be labeled as tender or tough, which would greatly enhance meat processors' ability to grade meat, allowing them to recover lost revenue. The biosensor technique utilized the chemical transduction principle of fluorescence resonance energy transfer (FRET). FRET requires the use of two fluorophores, termed a donor and acceptor. In this study, the donor fluorophore was conjugated to the protein, mu-calpain, while the acceptor fluorophore was conjugated to a monoclonal antibody. The results showed that in the presence of calpastatin, the labeled mu-calpain and antibody would bind to calpastatin, reducing the distance between the two proteins and eliciting a measurable change in fluorescence. The FRET dual binding technique was tested in heated and unheated meat extract, and a limit of detection for calpastatin was 120 ng/ml in diluted heated meat extract with no significant response in the unheated meat extract. Stable response times were achieved within 5 min. The proof-of-principle of utilizing a FRET dual binding technique to detect calpastatin in heated meat extract has been established.  相似文献   

18.
Zinc(II) ions (Zn2+) play an essential role in living systems, with their delicate concentration balance differing among the various intracellular organelles. The spatiotemporal distribution and homeostasis of Zn2+ can be monitored through photoluminescence imaging using zinc sensors. Among such biosensors, genetically encoded fluorescent sensor proteins are attractive tools owing to their subcellular localization advantage and high biocompatibility. However, the limited fluorescent properties of these proteins, such as their insufficient quantum yield and dynamic range, restrict their practical use. In this study, we developed an expression–screening–directed evolution system and used it to improve ZapCY1, a genetically encoded fluorescence resonance energy transfer (FRET) sensor. After four rounds of directed evolution, the FRET dynamic range of the modified sensor (designated ZapTV-EH) was increased by 1.5–1.7-fold. With its enhanced signal-to-noise ratio and ability to detect a wide Zn2+ concentration range, ZapTV-EH proves to be a better visualization tool for monitoring Zn2+ at the subcellular level. Combined with the simplified subcloning and expression steps and sufficient mutant libraries, this directed evolution system may provide a more simple and efficient way to develop and optimize genetically encoded FRET sensors through high-throughput screening.  相似文献   

19.
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.  相似文献   

20.
To visualize signal transduction based on protein phosphorylation in living cells, we have developed genetically encoded fluorescent indicators, named phocuses. Two different color mutants of green fluorescent protein (GFP) were joined by a tandem fusion domain composed of a substrate domain for the protein kinase of interest, a flexible linker sequence, and a phosphorylation recognition domain that binds with the phosphorylated substrate domain. Intramolecular interaction of the substrate domain and the adjacent phosphorylation recognition domain within a phocus was dependent upon phosphorylation of the substrate domain by protein kinase, which influenced the efficiency of fluorescence resonance energy transfer (FRET) between the GFPs within a phocus. In the present study, we employed phocuses composed of insulin signaling proteins to visualize protein phosphorylation by the insulin receptor. This method may provide a general approach for studying the dynamics of protein phosphorylation-based signal transduction in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号